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Single-species metapopulation dynamics:
concepts, models and observations
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This paper outlines a conceptual and theoretical framework for single-species metapopulation
dynamics based on the Levins model and its variants. The significance of the following factors to
metapopulation dynamics are explored: evolutionary changes in colonization ability; habitat patch
size and isolation; compensatory effects between colonization and extinction rates; the effect of
immigration on local dynamics (the rescue effect); and heterogeneity among habitat patches. The
rescue effect may lead to alternative stable equilibria in metapopulation dynamics. Heterogeneity
among habitat patches may give rise to a bimodal equilibrium distribution of the fraction of patches
occupied in an assemblage of species (the core-satellite distribution). A new model of incidence
functions is described, which allows one to estimate species’ colonization and extinction rates on
islands colonized from mainland. Four distinct kinds of stochasticity affecting metapopulation
dynamics are discussed with examples. The concluding section describes four possible scenarios of
metapopulation extinction.
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INTRODUCTION

The ecological literature provides two perspectives from which to view the
dynamics of metapopulations. One tradition emphasizes how ‘“‘a natural
population occupying any considerable area will be made up of a number
of ... local populations” (Andrewartha & Birch, 1954), how “the risk of wide
fluctuation in animal numbers is spread unequally over a number of
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subpopulations”, and how ‘“‘the consequences of this spreading of the risk in
space will be a relative reduction in the amplitude of fluctuations of animal
numbers in the entire population” (den Boer, 1968). The point Andrewartha &
Birch (1954) and den Boer (1968) are making is the varying conditions
experienced by individuals living in different local populations. The second line
of thinking is not focused so much on local populations but on the dispersal
between them, and on the evolutionary pressures modifying the rate of dispersal;
Gadgil’s (1971) work is a fine early example. These two research traditions,
emphasizing asynchronous dynamics of local populations and dispersal among
them, respectively, cover two of the three elements that are required for
metapopulation persistence in the face of unstable local dynamics. The third
requirement is some density dependence at the level of local populations (Taylor,
1988; Murdoch & Walde, 1989; Hanski, 1990).

This paper commences with a description of Levins’s (1969, 1970)
phenomenological metapopulation model, which has provided a conceptual
framework for empirical studies and has served as the starting point of many
theoretical analyses during the past 20 years. Even this simplest model of
metapopulation dynamics makes testable predictions about how habitat patch
size and isolation affect metapopulation persistence. I outline how data on island
or habitat patch occupancy may be used to draw inferences about the processes
on which metapopulation persistence hinges, the rates of extinction and
colonization. I then describe some variants of the Levins model, motivated by
empirical data, and indicate the need for structured metapopulation models, in
which the distribution of local population sizes is considered (reviewed by
Hastings, 1991). Current models, both simple and structured, assume that all
habitat patches are of the same size. This is seldom true in nature (Harrison,
1991), and I examine some consequences of relaxing this assumption. I then
describe four kinds of stochasticity with distinct consequences to metapopulation
persistence. Finally, I draw the previous results together into a summary of four
scenarios of metapopulation extinction.

THE LEVINS MODEL

Let us imagine a species living in an environment consisting of many similar
habitat patches. The size of local populations occupying these patches is assumed
to be either 0 (extinct) or X (local carrying capacity)}. Local dynamics are thus
ignored, apart from the extinction and colonization events. Movements from an
occupied patch are assumed to be equally likely to all other patches, in other
words the spatial arrangement of patches is ignored or is assumed to have no
consequence. The rate of colonization is assumed to be proportional to p, the
fraction of occupied patches (sources of colonists), and to 1 —p, the fraction of
unoccupied patches (targets for colonization). All local populations have the
same, constant extinction probability. With these assumptions, changes in p in
continuous time are given by,

dp/dt = mp(1 —p) —ep, (1)
where m and ¢ are the colonization and extinction parameters, respectively. The
equilibrium value of p is

p=1—¢/m. (2)
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f is positive if m is greater than e, otherwise § = 0. Equation (1) is the Levins
model, and equation (2) summarizes its main predictions. Note that the Levins
model incorporates the three elements that are required for population
regulation at the metapopulation level (Introduction): asynchronous dynamics
in local populations (uncorrelated colonization and extinction events), dispersal
among patches and density-dependent local dynamics (constant carrying
capacity).

In spite of its simplicity and obvious limitations, equation (2) is fundamentally
important in highlighting a key aspect of metapopulation dynamics:
metapopulation persistence requires that, for a given extinction rate, the
colonization rate exceeds a threshold value; and that for a given colonization
rate the extinction rate is smaller than a threshold value. Numerous empirical
studies have demonstrated how the extinction rate decreases with increasing area
of habitat patches, and how the colonization rate decreases with increasing
isolation, in small mammals (Smith, 1974, 1980; Pokki, 1981; Hanski, 1986),
birds (van Dorp & Opham, 1987), Daphnia waterfleas (Pajunen, 1986;
Bengtsson, 1988, 1989), spiders (Toft & Schoener, 1983; Schoener & Spiller,
1987), freshwater snails (Bronmark, 1985), aphids (Addicott, 1978) and many
other taxa. These observations allow us to relate metapopulation persistence to
the structure of the environment: for a given average isolation between habitat
patches, metapopulation persistence requires that the average patch area is
greater than a threshold value; and for a given average area of patches, their
average degree of isolation must be smaller than a threshold value.

The Levins model thus predicts that a species may be missing from systems of
small habitat patches, and from systems in which the average degree of isolation
is great, even if the patches may offer temporary support to local populations.
Carter & Prince (1981) suggest that the geographical distribution limit of many
plant species may be explained by metapopulation dynamics along a gradient of
decreasing habitat patch density, rather than, for example, by species’ climatic
tolerances. Prince & Carter (1985) present (indirect) supporting evidence for
one species, the prickly lettuce Lactuca serriola. Sjogren (1991) develops a similar
argument for the pool frog Rana lessonae studied on its northern distribution limit.
Another example of the effect of habitat patch isolation on metapopulation
persistence is the frequent absence of Daphnia waterfleas from islands with only
few and isolated rock pools (Hanski & Ranta, 1983; Bergtsson, 1991).

Evolutionary considerations

The extinction and colonization parameters in equation (1) are assumed to be
constants. One component of the colonization parameter is dispersal rate, which
varies greatly between species, and is clearly the result of natural selection (Roff,
1974; Hamilton & May, 1977; Comins, Hamilton & May, 1980, and others). It
has been appreciated for a long time that frequent extinctions of local
populations, which create vacant patches suitable for colonization, should select
for increased rate of dispersal (Brown, 1951; Southwood, 1962). In this
evolutionary perspective, the rate of dispersal is expected to evolve to
compensate for extinctions, and to keep g positive. Though a seemingly
reassuring consideration for conservation biologists, one should remember that
dispersal rates are likely to change so slowly that metapopulations living in
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habitats fragmented by man are unlikely to be rescued by this factor (den Boer,
1977).

It is also worth emphasizing that the ‘optimal’ rate of dispersal, the rate which
natural selection is expected to produce, depends on the optimization criterion,
for example whether individual fitness (the fitness of the disperser) or genetic
fitness (the fitness of a gene controlling dispersal) is used (Comins et al., 1980).
The difference between these two criteria increases with increasing variance in
gene frequency between habitat patches, which is likely to mean that the genetic
fitness criterion predicts more dispersal than the individual fitness criterion in
metapopulations consisting of small local populations. Both the individually and
genetically optimal rates of dispersal may be different from the ‘species
optimum’, the rate of dispersal which would give the highest value of f (Comins
et al., 1980). This is an especially important consideration for environments with
much regional stochasticity, which decreases the advantage of dispersal to
individuals (Gadgil, 1971; see also pp. 30-34).

Compensatory effects

It is important to Tealize that there are threshold values of habitat patch area
and isolation for metapopulation persistence, but it should also be noted that
metapopulation persistence depends simultaneously on the area and isolation of
patches. Therefore, small average area may be compensated by little isolation,
and great average isolation may be compensated by large areas. This point may
be made with the Levins model, by making m and e explicit functions of isolation
and area, respectively. In both cases, negative exponential functions provide a
plausible description:

m = mye~ P (3a)
e = e,e” . (3b)

D and A are the average isolation and area of habitat patches, and my, a, ¢, and &
are four parameters (the equation for ¢ is valid only for 4 greater than some
minimum value, below which extinction is immediate). Equation (2) now
becomes

F=1~(e/my)e™"* 2, (4)

illustrating the compensatory effect between A and D. Figure 1 gives one
example, in which both the area and the isolation of islands in a lake has a
significant effect on the occurrence of the shrew Sorex araneus. Such compensatory
effects between area and isolation have been analysed and discussed in the
context of island biogeography of mammals by Lomolino (1986), Lomolino,
Brown & Davis (1989) and Hanski (1986).

One more complication should be mentioned. Although the average area and
isolation of habitat patches in some large region may be such that persistence of
a species is not expected by equation (4), or by some more sophisticated model,
the species may nonetheless persist within a subset of patches with greater than
average area and/or smaller than average degree of isolation (DeAngelis, Travis

& Post, 1979).
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Figure 1. Presence (black dot) and absence (open circle) of the shrew Sorex aranehs on islands in two
lakes in Finland. The horizontal axis gives the isolation of the island, and the vertical axis gives the
logarithm of island area. The line gives the best separation of occupied and unoccupied islands with
respect to size and isolation (multiple regression as described by Lomolino et al., 1989). Island area
has a clearly significant effect, but the effect of isolation is also significant (the regression slope,
t = 3.00, P < 0.004), indicating a compensatory effect between isolation and area (from Peltonen &
Hanski, 1991).

INCIDENCE FUNCTIONS

Diamond (1975) devised a simple way of depicting how the probability of
occurrence of a species on islands (or habitat patches) depends on island area or
some other comparable attribute. In the case of area, islands are sorted into size
classes, and a histogram is prepared giving the proportion of islands in each class
on which the species was found—the species’ incidence function (B. Taylor,
1991, describes a more sophisticated method of fitting incidence functions to
empirical data). Figure 2 gives an example for three species of shrew.

Incidence functions have been used in island biogeographic studies, which
assume a mainland from which dispersing individuals to islands originate. The
appropriate model is a single-species version of the MacArthur-Wilson (1967)
model,

dp/dt = m(1—p)—ep, (5)
with g =m/(m+e). As the colonization and extinction rates are typically
measured as events per year, I shall replace m and ¢ by M and E, the per year
colonization and extinction probabilities. For simplicity, I assume that M is
constant, and that only E depends on island area. Following earlier suggestions
by Diamond (1979), Diamond & May (1981) and Gilpin & Diamond (1976,
1981), I assume that E = ¢//A*. Thus the incidence function ¥ is given by

J(4) = 1/[1+(¢/M)A7"], (6)

where ¢ and x are two extinction parameters. Parameter x describes how fast the
extinction probability decreases with increasing 4 and, assuming constant
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Figure 2. Incidence functions for three species of shrew (Sorex araneus, S. caecutiens and S. minutus) on
islands in lakes Koitere and Sysmi in eastern Finland (68 islands; from Peltonen & Hanski, 1991).
Islands have been grouped in logarithmic size classes (horizontal axis). The vertical axis gives the
fraction of occupied islands in each size class. The number of islands is given by the small figures
above the histograms.

population density, with increasing population size. (The Levins model would

yield another incidence function, which has not been used in the literature.)
Equation (6) may be fitted to empirical data to yield estimates of x and ¢/M.

As the extinction probability E cannot exceed unity, there must be a value of 4,

TaBLE 1. Parameter estimates of the incidence functions of the three species of shrew in Fig. 2
(average and standard error). 4* is the island size at which ¥ = 0.5. This table gives also the
predicted and observed colonization (M) and extinction probabilities (E) per year in the three
species. While calculating the predicted values, 4, was assumed to be 0.5 ha, and E was calculated
for A = 1.6 ha, the average size of islands from which the empirical results were collected. The
observed values are based on a 5-year survey of 17 islands (Peltonen & Hanski, 1991)

Predicted Observed
Species x SE ¢/M SE A* M E M E
araneus 2.30 0.68 0.79 0.22 0.9 0.26 0.07 0.20 0.04
caecutiens 0.91 0.24 17.67 11.36 23.5 0.03 0.35 0.05 0.33

minutus 0.46 0.16 4.09 1.51 21.4 0.18 0.59 0.13 0.46
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say A,, for which 4j = ¢. If 4, is known, or a good guess can be made, one may
estimate the value of ¢ and thus obtain an estimate of M. E may then be
calculated for any required value of A.

Table 1 gives the estimated values of x and ¢'/M for the three species of shrew
with incidence functions shown in Fig. 2. The extinction parameter x is greater
than 1 for the largest species araneus, indicating exponentially increasing
persistence time with increasing population size, and hence suggesting that
demographic stochasticity is the main cause of extinctions in this species. In
contrast, the exponent is only about 0.5 in the smallest species minutus, showing
that persistence time increases roughly logarithmically with population size,
which suggests an important role for environmental stochasticity. This difference
makes biological sense, because the smaller species of shrew have exceptionally
small body energy reserves and short starvation times, and are hence particularly
sensitive to temporal variation in food availability (Hanski, 1984, 1985a).

Table 1 gives also the predicted and observed values of M and E (the observed
values are from Peltonen & Hanski, 1991). The predicted and observed
colonization and extinction rates agree remarkably well, which strongly supports
the previous conclusion (Hanski, 1986) that island occupancy of these shrews is
determined by recurrent colonizations and extinctions. The close match between
the predicted and observed rates in Table 1 also suggests that the above
procedure may be used to draw useful inferences about the colonization and
extinction rates in other species. The slope of the incidence function equals
x/(44*) at ¥ = 0.5, where A* is the corresponding island area. The model thus
supports the intuitive notion (Schoener, 1986) that species which are much
affected by environmental stochasticity have shallow incidence functions.

INCORPORATING LOCAL DYNAMICS INTO METAPOPULATION MODELS

Let us return to the Levins model. It makes two important simplifying
assumptions: (1) there is no spatial correlation in the state (occupied or not) of
habitat patches (the ‘zero-correlation’ assumption), and (2) there are only two
states, presence and absence (the ‘discrete-state’ assumption with two states). In
reality, spatial correlations in occupancy may arise for two reasons, because
dispersal to a nearby patch is more likely than dispersal to a far-away patch
(‘stepping-stone’ dispersal), and because extinctions due to some common
environmental cause may be spatially correlated. Possible correlation due to
dispersal does not seem to be always critical, however, as several studies
comparing the consequences of ‘island’ (assumed in equation (1)) and stepping-
stone dispersal have reached broadly similar results (Gurney & Nisbet, 1978;
Comins ¢t al., 1980; Vance, 1984). In Nachman’s (1991) simulations, increasing
the fraction of island dispersal and decreasing the fraction of stepping-stone
dispersal had roughly the same effect as increasing the overall rate of dispersal.
The discrepancies that arise due to the two types of dispersal are largest when p is
small (Gurney & Nisbet, 1978). When quantitative predictions are needed it
may be necessary to assume the more realistic stepping-stone dispersal and to
resort to simulation studies (for an example see Soulé & Gilpin, unpublished).
Violation of the zero-correlation assumption due to correlated extinction events
will be discussed later.
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Figure 3. Relationship between the probability of local extinction and p in A, mangrove island
insects (Simberloff, 1976), B, leathoppers (Kontkanen, 1950) and C, fresh-water molluscs living in
small ponds (Boycott, 1930).

The second simplifying assumption of the Levins model, the discrete-state
assumption with two states, implies that all local populations have equal
extinction probabilities. Figure 3 gives three examples which suggest that the
extinction probability decreases with increasing p, the fraction of occupied
patches. In fact, one has a good reason to expect that this is a general trend. The
reason is the nearly universally observed increase in average population size with
increasing p (Hanski, 1982a; Brown, 1984; Gaston & Lawton, 1990), and the
even more ubiquitous increase in extinction probability with decreasing
population size (Williamson, 1981; Diamond, 1984; Schoener & Spiller, 1987).
These two relationships, when combined, produce a negative relationship
between extinction probability and p, such as is shown in Fig. 3 for three sets of
closely related species.
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Figure 4. Alternative stable equilibria in a modified Levins model, equation (7), which takes into
account the empirically observed (Fig. 3) negative relationship between extinction probability and
p. The thick and thin lines give the colonization and extinction rates divided by p. In B the two
functions have only one intersection point, which is stable, but in A there are two intersection points,
a stable one (black dot) and an unstable one (open circle). In this case the trivial equilibrium
(p = 0) is also stable.

The positive relationship between average population size N and the fraction
of occupied patches p has been given three explanations. First, this relationship
may be a sampling artefact: locally rare species are more difficult to detect than
common species, and hence appear to occur at fewer sites (Gaston & Lawton,
1990). This explanation is most likely to apply at small spatial scales, and
especially when several samples are taken from one local population (in this case
p is the fraction of samples in which the species was found). Second, Brown
(1984) suggested that the positive correlation between N and p is due to
ecological differences among species, which affect both their average abundance
and distribution. And third, the positive relationship between average
abundance and distribution may be due to metapopulation dynamics, as I will
demonstrate below. Though the second and third hypotheses are quite different,
they both highlight another complication in metapopulation dynamics,
alternative stable equilibria.

Let us take first Brown’s (1984) position but assuming that the correlation
between N and p applies to single-species dynamics as well as to interspecific
comparisons. Decreasing p is associated with decreasing N, and this is reflected in
increased extinction rate. To take this into account, I modify the Levins model
as follows:

dp/dt = mp(1—p) —ee™p, (7)

where ¢, and a are two extinction parameters. If ¢, is greater than m, this model
may have two alternative stable equilibria, separated by an unstable
equilibrium, a threshold value for metapopulation persistence (Fig. 4).

A simple model of N and p

To develop the metapopulation explanation of the positive relationship
between N and p in detail would require a structured metapopulation model, of
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the type pioneered by Hastings & Wolin (1989) and Hastings (1991). I shall
present here a simpler model by assuming that the time scale of local dynamics is
much faster than the time scale of metapopulation dynamics (this model may
also be justified as a limiting case of a structured model; Gyllenberg & Hanski,
unpublished). All local populations are hence assumed to be of equal size VN, but
unlike in the Levins model, the equilibrium population size is affected by
dispersal as well as by local dynamics. Let us denote by I the number of
dispersers per habitat patch. The following three ordinary differential equations
give the rates of change in p, N and I

dp/dt = aBI(1 —p)—ep (8a)
AN/t = —mN+al+rN(1—N) (8b)
dZ/dt = mpN—vl—oal. (8¢)

In this model, the colonization rate is assumed to be proportional to the
numbers of dispersers and the fraction of empty habitat patches. The numbers of
dispersers increase due to emigration from occupied patches, and they decrease
due to mortality and immigration to presently occupied and empty patches.
Most dispersers to empty patches are assumed to perish without giving rise to a
new local population, hence the colonization rate is given as a product of two
parameters, the immigration parameter o and the probability of successful
colonization, f. Local population size decreases due to emigration, which is
assumed to be density-independent, and it increases due to immigration and
local population growth, the latter modelled by the logistic equation (for
simplicity, carrying capacity is set to unity). Several empirical studies have
reported that immigration significantly increases the growth rate of small
populations (Smith, 1974; Holliday, 1977; Gottfied, 1979; Rey, 1981; Rey &
Strong, 1983; Conner, Faeth & Simberloff, 1983; Fahrig & Merriam, 1985).

At equilibrium, equations (8) give two relationships between N and p:

N=(1—a)+ab p, (9)
where a = m/r and b = a/(a+v), and
N = (¢/b)/(1—p). (10)

where ¢ = ¢/fm. The intersection points of equations (9) and (10) give the
equilibria of the system. There is one stable equilibrium if ¢/b < (1 —a). There is
no positive equilibrium if ¢ is substantially greater than (1 —a)b, while in the
intermediate cases there are two alternative stable equilibria. Note that
alternative equilibria are not possible if & = 0, in other words when immigration
makes no contribution to local dynamics. This conclusion also emerges from a
structurally different metapopulation model (Hanski, 1985b; Hastings, 1991; see
also Roughgarden & Iwasa, 1986).

Varying the parameter values in equations (8) within reasonable limits and
calculating the corresponding positive stable equilibrium, if any exists, tends to
yield a cloud of points with a positive relationship between N and p (Hanski,
unpublished). This is most apparent if only ¢/f is varied, because then all
equilibria lie on the straight line given by equation (9). This model thus
demonstrates that metapopulation dynamics may explain the empirically
observed positive relationship between N and p.
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In the present model, the fraction of occupied patches depends primarily on
the extinction and colonization rates (¢/f), while average population size is
mostly affected by emigration rate in relation to population growth rate (m/r)
and by the rate of mortality of dispersers (v). Gadgil (1971) suggested in a
pioneering study that average population size decreases with increasing isolation
of habitat patches due to increasing mortality during dispersal. Similarly, Fahrig
& Paloheimo (1988) found in a simulation study that average population size
was strongly affected by dispersal processes. Huffaker’s (1958) well-known
experiment with mites feeding on oranges and the study by Fahrig & Merriam
(1985) on Peromyscus leucopus inhabiting more or less isolated woodlots are two
examples demonstrating how isolation may influence average population size in
the laboratory and in the field, respectively.

Three kinds of rare species

One may distinguish between four kinds of species with respect to their
average local abundance N and the fraction of occupied patches p: species with
large N and p (core species), species with small V and p (satellite species), species
with small N but large p (rural species) and species with large N but small p
(urban species; the first two terms are from Hanski, 1982a, and the latter two are
from Soderstrom, 1989). There are thus three kinds of rare species, with either ¥
or p, or both, small. What does the model say about the characteristics of the
different kinds of rare species? (The reader is warned that the well-known
classification of rare species by Rabinowitz, Cairns & Dillon, 1986, is based on
different criteria than are used here.)

In the present model, rural species are characterized by low growth rate
(small r/m) and low ratio of extinction to colonization rates (small ¢/f), while the
opposite attributes are typical for urban species. Increasing mortality of
dispersers (v) may turn a core species into a satellite species (assuming that 1 —a
is close to ¢/b). A study by Soderstrom (1989) gives an opportunity to test some of
these predictions. He surveyed the occurrence of epixylic bryophyte species in
stands of late successional spruce forest in northern Sweden. Local abundance
was estimated as percentage cover on available logs in occupied forest stands.
Soderstrom (1989) identified three urban species in his material, all of which
regularly produced gemmae (asexual reproduction) but none of which were
recorded to reproduce sexually. In other words, these species probably have high
local growth rate but low dispersal rate (large r/m), as predicted for urban
species. The seven core species had both asexual and sexual reproduction, while
the seven satellite species had only sexual reproduction, and thus probably lower
r than the core species, which is consistent with the present model. The only
species classified as rural showed intermediate rates of sexual and asexual
reproduction.

METAPOPULATION DYNAMICS IN HETEROGENEOUS ENVIRONMENTS

Current metapopulation models assume that all habitat patches are similar in
size and quality. Variation in local population size in the existing structured
metapopulation models (Hastings & Wolin, 1989; Gyllenberg & Hanski,
unpublished) is due to the history of local populations, not to differences in the
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environment. This is a severe shortcoming of the models, because the dominant
metapopulation structure in nature is one or more large and practically
invulnerable local populations in large and/or favourable habitat patches,
surrounded by relatively unstable populations in smaller habitat patches
(Harrison, 1991). Such ‘mainland-island’ metapopulation structure has been
examined theoretically in the context of group selection by Boorman & Levitt
(1973). The shrew example described above belongs to this category, and other
well documented examples include Daphnia in rock pools on some islands
(Pajunen, 1986), the heath fritillary butterfly Mellicta athalia (Warren, Thomas
& Thomas, 1984), and the bay checkerspot butterfly Euphydryas editha bayensis
(Harrison, Murphy & Ehrlich, 1988).

There is an urgent need to develop metapopulation models that include
variation in habitat patch size and quality. Meanwhile, one consequence of
environmental differences between patches may be captured with another
version of the Levins model. Let us take as our starting point equation (7), which
takes into account the rescue effect, decreasing extinction rate with increasing
fraction of occupied patches. If there are differences among the habitat patches
that affect the extinction probability, it is clear that when more of the patches
are occupied the average extinction rate is higher than when a species is present
only in few patches, which tend to be the most favourable ones for the species.
Habitat heterogeneity and the rescue effect thus have opposite effects on average
extinction rate, which is likely to be highest when p has an intermediate value.
To take habitat heterogeneity into account, let us multiply the extinction rate in
equation (7) by p"

dp/dt = mp(1 —p) —ee™p'*". (11)
Small but positive values of 7 correspond to situations in which there are large
differences among habitat patches, and only a few of them are large and
occupied by local populations with a low extinction probability (equation 11
gives unrealistically low extinction rates for metapopulations with very low p,
but this does not affect the result about the distribution of p values, described
below).

This model may have up to three positive equilibria, and hence there is a
possibility for alternative positive, stable equilibria (compare with equation 7).
For a small value of T and for a range of values of the other parameters, m, ¢, and
a, the distribution of g values tends to be bimodal, most values being very large
or very small. This is a commonly observed pattern in nature (Fig. 5; see also
Hanski, 1982a,b; Gotelli & Simberloff, 1987; Collins & Glenn, 1990; for a
possible counter-example see Gaston & Lawton, 1989). Bimodal distribution of #
values is also predicted by the core-satellite species model (Hanski, 1982a),
which is a simple stochastic metapopulation model. However, the original core-
satellite model has two problems: rare species are likely to become rapidly
extinct from the entire system of patches, and the predicted switches of species
between the core (large p) and the satellite (small p) status are not commonly
observed in nature (Solbreck, 1990, gives an example). Equation (11) does not
have these problems, because it predicts a bimodal distribution of § values as a
stable equilibrium distribution. There has been substantial discussion in the
literature on the validity of the core-satellite species hypothesis (Hanski, 1982b;
Gotelli & Simberloff, 1987; Gaston & Lawton, 1989; Collins & Glenn, 1990).
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Vascular plants Butterflies

Number of species

42 49 6 13 19 25 31 37 43
Number of sites occupied

14 21 28 3

Figure 5. Two examples of bimodal distributions of § values in assemblages of species with similar
ecology. A, Anthropochorous plants surveyed in villages surrounded by forest (data from Linkola,
1916; for a full analysis see Hanski, 1982b). B, Butterflies in Britain (data from Pollard et a/., 1986).

Equation (11) demonstrates that a bimodal distribution of f values can be
expected also in species assemblages for which the original stochastic model is an
unrealistic description.

FOUR KINDS OF STOCHASTICITY

May (1973) made an important distinction between two forms of stochasticity
affecting population growth. Demographic stochasticity refers to the chance
events of death and birth that are uncorrelated between individuals, while
environmental stochasticity alludes to correlated birth and death events, due to
some common environmental factor, for example poor breeding success in cold
and rainy spring or increased death rate due to exceptional frost. The distinction
between the two kinds of stochasticity may occasionally be difficult to make in
practice, but this does not detract from the value of the concepts.

Analogous types of stochasticity may be defined for metapopulations by
substituting ‘local population’ for ‘individual’ in the above definitions. To avoid
confusion, it would be convenient to have distinct terms for the metapopulation-
level stochasticities. I suggest the terms immigration-extinction stochasticity and

TasLE 2. Definitions of the four kinds of stochasticity operating in

metapopulations
Correlation
Type of stochasticity Unit affected between units
Demographic Individual No
Immigration-extinction Population No
Environmental Individual Yes

Regional Population Yes
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regional stochasticity for the metapopulation-level equivalents of demographic
and environmental stochasticity, respectively (Table 2).

Immugration-extinction stochasticity

Real metapopulations consist of a finite number of local populations. When
that number is small, and when the extinction probability of local populations is
not negligible, it is possible that a metapopulation which is expected to persist by
equation (1), or by some analogous deterministic model, nonetheless becomes
extinct simply because all local populations happen to become extinct at the
same time. In the case of demographic stochasticity, 20 breeding females has
been cited as the ‘magic’ number below which extinction due to demographic
stochasticity is a real threat (Soulé, 1986). We may expect that a qualitatively
similar result holds for metapopulations.

Nisbet & Gurney (1982) give the following approximation for 7, the mean
lifetime of a metapopulation:

Ty = T, exp[PY/(2(H—P))], , (12)

where 7; is the mean lifetime of a local population, H is the number of habitat
patches, and P is the equilibrium number of local populations; P =
H(1—1/mT.), where m is the colonization parameter. Equation (12) may be
rewritten as

Ty = T exp[HmT, +1/mT, —2)/2], (13)

showing that the metapopulation persistence time increases exponentially with H
and hence with P. As a numerical example, if H = 20 and 2 = 10, then T, is 150
times greater than 7. Nisbet & Gurney (1982) find that a metapopulation will
persist for a long period of time if the average proportion of occupied patches
exceeds 3H~%. For example, if half of the patches are occupied on average, H
should exceed 36 for the metapopulation to persist for a long time, but if only
109, are occupied, H should exceed 900. The absence of Daphnia waterfleas from
islands with few rock pools (Hanski & Ranta, 1983) is a likely example of
immigration-extinction stochasticity. Both demographic and immigration-
extinction stochasticities pose a real threat to forest raptors in Java, as they are
confined to a small number of relatively small forest reserves (Rolstad, 1991).

It is important to make a clear distinction between the effects of demographic
and immigration-extinction stochasticities on metapopulation persistence time.
If demographic stochasticity is the only cause of local extinctions,
metapopulation persistence time decreases with increasing fragmentation, which
decreases the size of local populations to the limit where demographic
stochasticity is important (Burkey, 1989). However, this assumes that there are
many populations. If there are not, immigration-extinction stochasticity will
counteract the effect of demographic stochasticity, and it remains unclear how
metapopulation persistence time is affected by fragmentation.

Regional stochasticity

There are many ways to talk about regional stochasticity. Levins (1969, 1970)
analysed the effect of temporal variance in extinction rate (of local populations);
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Figure 6. Temporal changes in several local populations of two carabid beetles, Pterostichus versicolor
and Calathus melanocephalus, sampled in a Dutch heath. The former species shows less regional
stochasticity than the latter (see also Fig. 7) (from den Boer, 1981).

den Boer (1968) stressed the importance of ‘“‘spreading of risk” among many
local populations; and, most recently, Gilpin (1990) and Harrison & Quinn
(1990) emphasized the significance of correlated extinction events in
metapopulation dynamics. All of them were concerned with regional
stochasticity. Figure 6 gives an example from den Boer’s (1981) 20-year study of
two carabid beetles living in a Dutch heath. Assuming that the population
fluctuations shown in this figure are due to stochasticity, and not to the intrinsic
dynamics of the species, Pterostichus versicolor has experienced less regional
stochasticity than Calathus melanocephalus (see also Fig. 7).

Environmental stochasticity decreases metapopulation persistence time by
increasing e in equation (1), but metapopulation persistence time is additionally
decreased by increasing regional stochasticity, in an exactly analogous manner
as the expected lifetime of a local population is decreased by environmental
stochasticity. If there is no regional stochasticity, a metapopulation of many
populations, provided they are not so small that demographic stochasticity



