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Abstract

The rapid ecological shifts that are occurring due to climate change present

major challenges for managers and policymakers and, therefore, are one of the

main concerns for environmental modelers and evolutionary biologists. Species

distribution models (SDM) are appropriate tools for assessing the relationship

between species distribution and environmental conditions, so being customar-

ily used to forecast the biogeographical response of species to climate change. A

serious limitation of species distribution models when forecasting the effects of

climate change is that they normally assume that species behavior and climatic

tolerances will remain constant through time. In this study, we propose a new

methodology, based on fuzzy logic, useful for incorporating the potential capac-

ity of species to adapt to new conditions into species distribution models. Our

results demonstrate that it is possible to include different behavioral responses

of species when predicting the effects of climate change on species distribution.

Favorability models offered in this study show two extremes: one considering

that the species will not modify its present behavior, and another assuming that

the species will take full advantage of the possibilities offered by an increase in

environmental favorability. This methodology may mean a more realistic

approach to the assessment of the consequences of global change on species’

distribution and conservation. Overlooking the potential of species’ phenotypi-

cal plasticity may under- or overestimate the predicted response of species to

changes in environmental drivers and its effects on species distribution. Using

this approach, we could reinforce the science behind conservation planning in

the current situation of rapid climate change.

Introduction

Human activities are causing major environmental modi-

fication, including habitat destruction, fragmentation, and

degradation, and, as a result, many populations are

exposed to novel perturbations and declines are occurring

all over the world (Scheffer et al. 2001). On the other

hand, these modifications may constitute new opportuni-

ties for species to take advantage of both ecologically and

evolutionarily (Reid et al. 2007). New selective pressures

on phenotypic traits may arise from the interaction of

individuals with their new, modified local environment,

which consists of abiotic and biotic factors. Phenotypic

traits, including individual behavior, may respond to

these pressures under the constraints imposed by the

organism’s genetic architecture, and this response in turn

affects how individuals shape their environment (Ferri�ere

et al. 2004). This causal relationship, from the environ-

ment to the individuals, and back, defines the environ-

ment feedback loop that intimately links ecological and

evolutionary processes.

Over the past decades, human-intensified climatic

change is becoming an additional pressure on natural

populations (Loarie et al. 2009). The 2013 Report of the

Intergovernmental Panel on Climate Change (IPCC 2013)

confirms that warming in the climate system is unequivo-

cal, with many of the observed changes unprecedented

over decades to millennia and likely without precedent
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during the last 10,000 years, according to palaeoclimate

data (IPCC 2001). Species could respond to the effects of

global warming, among others, by shifting their geograph-

ical distribution (Parmesan and Yohe 2003; Barbet-Massin

et al. 2009), changing the timing of growth and reproduc-

tion (Franks et al. 2007; Pulido and Berthold 2010), and

also undergoing evolutionary adaptations (Williams et al.

2008).

There is recent evidence that evolutionary changes

driven and constrained by ecological interactions can be

rapid (Bradshaw and Holzapfel 2006; Parmesan 2006;

Hoffmann and Sgro 2011; Ozgo 2011). These evolution-

ary changes may be critical for the resilience of ecosys-

tems challenged by environmental modifications on a

wide range of temporal and spatial scales. This point

out that evolutionary adaptation could be an important

way for natural populations to counter and adapt to

rapid climate change. Hendry and Kinnison (1999) con-

cluded that rapid microevolution could represent the

norm rather than the exception in contemporary popu-

lations confronted with environmental change. Adaptive

changes could enable species for exploiting newly favor-

able opportunities provided by a changing climate,

enabling them to shift and expand their geographic

ranges by the progressive establishment of new local

populations.

In recent times, predictive modeling of species distribu-

tion has become an important tool in studies of ecology,

biogeography, evolution, conservation biology, and cli-

mate change research (e.g., Guisan and Thuiller 2005).

Models estimate the species’ ecological requirements asso-

ciating geographic distributions with sets of predictor

variables, and are informative when investigating the pos-

sibility that particular changes in climate might affect dis-

tributions. As behavioral plasticity to environmental

changes can be fast and strong, it should not be ignored

when predicting the effects of climate change on species

distributions. This point would help to produce better,

more scientifically sound, forecasts of the effects of global

warming on biodiversity. However, with some exceptions

(e.g., Kearney et al. 2009; Sinervo et al. 2010), the impor-

tance of species’ behavioral plasticity is normally ignored

in predicted distribution shifts, colonization patterns, and

species’ responses to climate change.

An explanatory model was proposed for the distribu-

tion of an endangered species in Spain, the Bonelli’s eagle

Aquila fasciata, based on climate and topography (Mu~noz

et al. 2005). Subsequently, climate change was predicted

to affect the distribution of this species throughout this

century, favoring its expansion in Europe, although its

cliff-nesting breeding habits may hinder its actual capacity

to colonize new climatically favorable areas (Mu~noz et al.

2013). Although the species normally breeds on cliff

ledges, it shows some potential for adaptation to nest in

other substrates as trees.

In this study, we take Bonelli’s eagle as case study to

propose a methodology based on fuzzy logic to model the

future distribution of species taking into account their

behavioral plasticity and capability to respond to the

opportunities and challenges represented by different cli-

mate change scenarios.

Materials and Methods

Study area

The study area comprises the mainland Spanish territory,

an area of 493,518 km2 characterized by an heterogeneous

climate and located between the temperate climate of cen-

tral Europe and the arid climate of northern Africa, which

makes it particularly appropriate for analyzing different

climate change scenarios (Fig. 1) (Nogu�es-Bravo et al.

2008). There is a mainly eastward- and southward-

decreasing gradient of precipitation and a mainly north-

ward-decreasing gradient of temperature (Font 2000).

Annual precipitation varies from less than 200 mm to

more than 2000 mm, whereas mean annual temperatures

vary from less than 6°C to more than 17°C (see Fig. 2A

and B, respectively). Mainland Spain has important

mountain ranges, with a maximum altitude of 3478 m,

many of them in coastal areas (see Fig. 2C).

Study species

We focused our study on Bonelli’s eagle, a long-lived ter-

ritorial raptor that suffered a severe population decline of

20–50% over the last decades in Europe (Rocamora 1994;

Real 2003). The current estimated European population

consists of 920–1100 pairs (BirdLife International 2004),

of which approximately 80% are concentrated in our

study area. On a global scale, it occupies mountains, cliffs,

crags, gorges, hills, and plains with forest or woodland

(Cramp and Simmons 1980), although in some areas, it

may build its nest on lofty trees, as in southern India and

Portugal (Ali and Ripley 2001; Palma 2010). In Spain,

Bonelli’s eagle is primarily a cliff-nesting species, with

95.5% of the nests found in this substrate, while trees and

power lines are used in a small proportion, 4% and 0.5%,

respectively (Del Moral 2006). Interestingly, in the

domain of the Iberian Peninsula, in Portugal, the propor-

tion of pairs nesting on trees is different, with 64% of the

Portuguese population nesting in large eucalyptus, pines,

and cork oaks (Palma 2010). Although in northern Portu-

gal this species normally breed on cliffs, in southern Por-

tugal, 94% of breeding pairs are tree-nesters (Palma

2010). This makes obvious the plasticity of the species
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when choosing nesting substrate, being able to breed in

trees in those favorable areas where mountains are scarce.

Target and predictor variables

To model the species’ distribution, we used the data pro-

vided by the last national survey, carried out in 2005 (Del

Moral 2006) (see Fig. 3). The fundamental unit for the

species distribution in mainland Spain was the UTM

10 9 10 km square, with a total of 5167 quadrats in the

study area. We used 18 variables related to climate and

topography (Table 1). As highlighted by Rapacciuolo

et al. (2014), we considered various aspects of climate to

obtain range shifts more complex than expected solely

from temperature changes. These factors were selected

because topography and Mediterranean climate are con-

sistent factors influencing the distribution of the species

in Spain at different spatial scales; from a national scale

(Mu~noz et al. 2005; Carrascal and Seoane 2009), to more

local scales centered in the near vicinity of the nesting

sites (Gil-S�anchez et al. 2004; L�opez-L�opez et al. 2006;

Mu~noz and Real 2013).

Climate variables were obtained from data supplied by

the Agencia Estatal de Meteorolog�ıa of Spain (AEMET)

and digitised using the method explained by Real et al.

(2010). Altitude was obtained as a digital coverage by the

Land Processes Distributed Active Archive Center, with

100 m spatial resolution. The digital slope was calculated

based on altitude using Idrisi (Eastman 2004), according

to the methods described in Barbosa et al. (2003). For the

topographic variables altitude and slope, we considered

the possibility of unimodal responses of the species, by

including the quadratic function of these variables (A2,

S2). Exposures to the south (SE) and west (WE) were

derived from GlobDEM50 high-resolution digital eleva-

tion data, based on raw data from the Shuttle Radar

Topography Mission (Farr and Kobrick 2000). For the

variable SE, a pixel whose aspect was south was given the

EUROPE

500 km
Figure 1. Study area, mainland Spain, with

details of Mediterranean regions. I: Andalusia,

II: Murcia, III: Valencia, and IV: Catalonia. The

models’ performance was assessed outside and

inside the Spanish Mediterranean area.
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value 180, a pixel whose aspect was north was given a

value of 0, and pixels with intermediate aspects (westward

or eastward) were given intermediate values. The proce-

dure was analogous for the variable WE. Although the

resolution scale adopted for all variables was 1 pixel c.

1 km2, we obtained the values of the variables in the

UTM 10 9 10 km squares using the module EXTRACT

of Idrisi32 (Clark University, Worcester, MA).

The climatic data resulted from the regional downscal-

ing to Spain of the climate change models produced by

(A)

(B)

(C)

Figure 2. Distribution of mean annual precipitation (A), mean annual

temperature (B), and mean altitude (C) in the study area.

Figure 3. Present Bonelli’s eagle distribution based on UTM

10 9 10 km squares in mainland Spain. Black squares represent

breeding territories presences (data taken from Del Moral 2006).

Table 1. Variables used to model the species distribution grouped in

explanatory factors and their sources.

Factor Variables Code

Topography Mean altitude(1) A

Second-order polynomial of Altitude A2

Slope (°) (calculated from altitude) S

Second-order polynomial of Slope S2

Southward exposure degree(°)(2) OrS

Westward exposure degree(°)(2) OrW

Climate Mean annual precipitation (mm)(3) PAn

Mean spring precipitation (mm)(3) PSp

Mean summer precipitation (mm)(3) PSu

Mean autumn precipitation (mm)(3) PAu

Mean winter precipitation (mm)(3) PWi

Mean annual temperature (°C)(3) T

Mean January temperature (°C)(3) TJan

Mean July temperature (°C)(3) TJul

Mean spring temperature (°C)(3) TSp

Mean summer temperature (°C)(3) TSu

Mean autumn temperature (°C)(3) TAu

Mean winter temperature (°C)(3) TWi

Sources: (1)US Geological Survey (1996), (2)Farr and Kobrick (2000),

and (3)Agencia Estatal de Meteorolog�ıa of Spain (AEMET), Ministerio

de Medio Ambiente (http://www.aemet.es/es/elclima/cambio_climat/

escenarios).
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the Intergovernmental Panel on Climate Change (IPCC).

We used four atmosphere–ocean general circulation mod-

els (AOGCMs): CGCM2 from the Canadian Climate Cen-

tre for Modeling and Analysis, ECHAM4 from the Max

Planck Institut f€ur Meteorologie, and HadAM3H and

HadCM2SUL from the Hadley Centre (UK). According

to the data obtained from the AEMET, the circulation

models CGCM2 and ECHAM4 were run with the condi-

tions forecasted by the Special Report on Emissions Sce-

narios (SRESs) A2 and B2 (Nakicenovic and Swart 2000),

HadAM3H was run with the scenario available A2, and

HadCM2SUL was run with the scenario IS92a (Leggett

et al. 1992). All the climatic models were run for the peri-

ods: 1961–1990 and 2071–2100.

Model construction

Variable selection

We developed distribution models for the species based

on topographic variables alone, on climate alone, and on

topography and climate together (see Table 1). To

reduce multicollinearity among variables, we made a pre-

selection of the candidate variables by calculating Spear-

man correlation coefficients between them, retaining

only one out of any set of variables correlated with

r > 0.8. The relationships between the individual vari-

ables and the distribution of the species were tested sep-

arately using logistic regression. In this way, we tested a

logistic relationship between the species distribution and

the variables. This includes a S-shaped relationship (if

the logit function covered wide positive and negative

ranges), a J-shaped relationship (if the logit function was

biased to the negative range), a potential relationship (if

the logit was biased to the positive range), and a linear

relationship (if the logit function covered narrow posi-

tive and negative ranges). We calculated the significance

of the score statistic, based on the maximum likelihood

estimation (MLEs), and only those variables whose rela-

tionship was significant with a < 0.05 were retained. To

avoid the increase in type I errors arising from the large

number of remaining variables (Garc�ıa 2003), we con-

trolled the false discovery rate (FDR) according to Benja-

mini and Hochberg’s (1995) procedure, accepting only

those variables that were significant under an FDR of

q < 0.05. We also used the variance inflation factor (VIF)

to quantify collinearity among the remaining explanatory

variables in the topographical, climatic, and the topo-cli-

matic models. The square root of the variance inflation

factor indicates how many times larger the standard error

of a variable is, compared with what it would be if that

variable were uncorrelated with the other independent

variables in the equation (Zuur et al. 2010).

With the resulting set of variables, we run forward–
backward stepwise logistic regression on each subset

of predictor variables (topographic, climatic, and

topo-climatic). To estimate the relative weight of each

variable in the models, we used Wald’s test (Wald 1943).

The favorability models

On the obtained logistic regression models, we applied the

favorability function (Real et al. 2006) and obtained the

corresponding favorability (F) for the species in each UTM

10 9 10 km cell. This function may be expressed as:

F ¼ ey=ðn1=n0 þ eyÞ;
where F is the logit link of the favorability function, e is

the Neperian number, y is the logistic regression model

equation, and n1 and n0 are the numbers of presences

and absences, respectively.

Favorability models show how the probability of a spe-

cies’ local presence differs from that expected by chance

in the study area, making it easier to differentiate between

localities with environmental conditions that are favorable

or unfavorable for the species’ presence (Acevedo and

Real 2012). Unlike other modeling techniques providing

probability values, favorability models can discriminate

between the effect of environmental conditions and the

probability of presence derived from the species preva-

lence within the study area (Acevedo and Real 2012).

Furthermore, favorability models allow for model combi-

nations through fuzzy logic (Acevedo et al. 2010).

Model assessment

The Akaike information criterion (AIC) was applied to the

obtained models, selecting the most parsimonious (Burn-

ham and Anderson 2002). The goodness of fit of the mod-

els was assessed by means of the Hosmer and Lemeshow

(2000) test. We assessed the discrimination power of the

favorability models by calculating Cohen’s kappa coeffi-

cient, sensitivity, specificity, and correct classification rate,

using the favorability value of F = 0.5 as classification

threshold (see Fielding and Bell 1997). We also obtained

the area under the curve (AUC) to complete the assessment

of the discrimination capacity of the different distribution

models (see Lobo et al. 2008). Favorability models with

higher discrimination capacity were considered to be better

models, as all the models were applied to the same dataset.

Variation partitioning procedure

As climate and topography are interrelated, we determined

the relative contribution of climate in relation to that of

topography in the topo-climatic model using a variation
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partitioning procedure (Mu~noz and Real 2006). In this way,

we distinguished the apparent effect of climate (R2
Clim), both

exclusively and in conjunction with topography, the pure cli-

matic factor (PCF, measured with R2
pClim), that is, the pure

effect of climate on the model variation not affected by

topography; the pure topographic factor (PTF, measured

with R2
pTop), that is, the variation in the model that was due

to the pure effect of topography not affected by climate; and

the shared climatic factor (SCF, measured with R2
ClimTop), that

is, the proportion which was assignable to their shared effect

(Legendre 1993; Legendre and Legendre 1998; Randin et al.

2009; see also Mu~noz et al. 2013).

Future projections and fuzzy logic theory

The climatic and topo-climatic favorability models were

projected to the future by replacing the values of the dif-

ferent climatic variables in the logit function for the pres-

ent (yp) by their corresponding values in the period

2071–2100. In this way, we obtained in each cell a value

of the logit function for the future (yf) and a correspond-

ing expected future favorability (Ff) according to the

apparent effect of climate on the species distribution for

each AOGCMs -SRESs combination.

Favorability values may be interpreted as the degree of

membership of the sites to the fuzzy set of localities

favorable to the species (Real et al. 2006, 2010; Acevedo

and Real 2012; Mu~noz et al. 2013). In this way, we used

some fuzzy logic operations (Kuncheva 2001) to calculate,

for each future projection, the IOMS features of the fore-

casted effect of climate change of the species favorability

proposed by Real et al. (2010), namely the increment in

favorability for the species (I), the favorability overlap

(O), the degree of favorability maintenance (M), and the

forecasted shift in favorability (S) with respect to the

1961–1990 period:

I ¼ c Ff
� �� c Fp

� �

c Fp
� �

O ¼ c Ff \ Fp
� �

c Ff [ Fp
� �

M ¼ c Ff \ Fp
� �

c Fp
� �

S ¼ Min c Fp
� �� c Ff \ Fp

� �
; c Ff
� �� c Ff \ Fp

� �� �

c Fp
� �

where c(X) is the cardinality of the X fuzzy set, that is,

the sum of all cells’ membership degrees to the fuzzy set

X.

1. Ff is the fuzzy set of future favorable areas for the spe-

cies, and the membership degree of each cell to Ff is

defined by the future favorability value for the species

in the cell.

2. Fp is the fuzzy set of present favorable areas for the

species, and the membership degree of each cell to Fp
is defined by the present favorability value for the spe-

cies in the cell.

3. Ff ∩ Fp is the intersection between future and present

favorabilities, and the membership degree of each cell

to Ff ∩ Fp is defined by the minimum of the two

favorability value for the species in the cell.

4. Ff ∪ Fp is the union between future and present favor-

abilities, and the membership degree of each cell to Ff
∪ Fp is defined by the maximum of the two favorabil-

ity values for the species in the cell.

Positive values of increment (I) indicate a favorability

expansion for the species, that is, a gain of favorable

areas, whereas negative values of I mean a net loss of

favorability areas for the species. High values of overlap

(O) indicate that the distribution of the future local

favorability values is predicted to be similar to that shown

at present. Maintenance (M) indicates the degree to

which current local favorability values are predicted to

persist in the future, so that low values of M are of more

conservation concern that high M values. Favorability

shift (S) measures the proportion of the present favorabil-

ity that is predicted to be lost in the future but may be

compensated with new favorability opportunities else-

where.

Applying the expression yf1 = yp + q(yf � yp), we cal-

culated the minimum (if the apparent effect is inflated)

or the maximum (if the apparent effect is obscured) cli-

matic effect over the species distribution, where yi repre-

sents the logit functions of the corresponding probability

models, and q = R2
pClim=R

2
Clim. We applied the favorability

function (Real et al. 2006) to obtain the expected future

favorability according to the pure effect of climate (Ff1),

so that Ff and Ff1 represent the limits of the forecasted

effects of climate change on the spatial distribution of the

favorability for the species.

Ff 1 ¼ eyf 1=ðn1=n0 þ eyf 1Þ

Considering behavioral plasticity

By modeling the distribution of the species with the vari-

ables related to topography, we obtained the potential

range of the eagle only considering nesting substrate

availability, according to Bonelli’s eagle current use of

breeding habitat; by modeling the species distribution

using only climatic variables, we established the current

climatic favorability for the species; and by computing
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the fuzzy intersection between the topographic and the

climatic models, we identified those areas that were

simultaneously favorable according to climate and nesting

substrate availability. In this way, we (1) discarded areas

with availability of cliffs to breed that were climatically

unfavorable, and (2) discarded climatically favorable areas

where cliff availability was low.

By modeling the distribution considering both topo-

graphic and climatic variables together, we identified

those areas that were favorable for the species due to a

combination of climate and topography, allowing a cer-

tain compensation of favorability between the two factors,

which implies a certain plasticity in the nesting behavior

of the species in those climatically favorable areas, which

is the characteristics we are aiming to include in the

models. We projected the models representing the maxi-

mum climatic effect over the species distribution, as they

represent the maximum of opportunity to take advantage

of by the species through behavioral evolution or plastic-

ity.

We assessed the models’ performance both outside and

inside the Spanish Mediterranean area (Andalusia, Mur-

cia, Valencia, and Catalonia; see Fig. 1), as the latter is

the climatically favorable region for the species, and

where this kind of evolutionary or phenotypically plastic

compensation could putatively be currently occurring.

The extrapolation of the topo-climatic models to the

future yielded future favorabilities for the species on the

assumption that a lack of topographic favorability can be

compensated by an increase in climatic favorability. This

will be true only if an increase in climatic favorability is

forecasted and the species may change its nesting behav-

ior, and so those forecasts include the realization of the

behavioral plasticity of the species into the predictions.

However, the species could remain constrained by the

current plasticity in nesting behavior in Spain, which was

included in the current topo-climatic model, only being

able to increase its nesting distribution in new climatic

favorable areas that are also topographically favorable.

This was evaluated using fuzzy logic operations to obtain,

for each climate change scenario predicting an increase in

climatic favorability, the following model:

FpTopClim [ ðFfTopClim \ FTopÞ;
where FpTopClim is the current topo-climatic favorability,

FfTopClim represents the forecasted maximum topo-cli-

matic favorability, and FTop is the topographic favorability.

This model will forecast future favorability areas on the

assumption that the species will not increase its current

plasticity in nesting behavior. In this way, FfTopClim repre-

sents favorability forecasting in case of complete realiza-

tion of the evolutionary capacity of the species, whereas

FpTopClim ∪ (FfTopClim ∩ FTop) represents the favorability

forecasting in a scenario of no behavioral change.

Results

The favorability models and fuzzy logic
theory

We obtained significant models for the current favorabil-

ity according to both the topographic and the climatic

factors, and for the two factors combined. The models

based on only topography and only climate produced

very different favorability outputs (Fig. 4), but their over-

all explanatory and discrimination capacity, and classifica-

tion performance were similar (Table 2). The topographic

model predicts favorable areas in most of the Spanish

mountain ranges, even in the north, where the species is

absent, while the climatic models forecast as favorable

mostly the Mediterranean region in all combination of

AOGCM and SRES, which indicate that the true role of

topography is only apparent after considering climate.

Variables related to aspect were included in the topo-

graphic model (Table 2), but in the topo-climatic model,

they tended to be excluded. Both precipitation and tem-

perature variables were included in climatic models. Sce-

narios A2 and B2 applied to the circulation model

ECHAM4 produced the same precipitation and tempera-

ture values, and thus the same models, whereas they dif-

fered in the model CGCM2. This is why we named these

climatic and topo-climatic models ECHAM4-A2/B2,

CGCM2-A2 and CGCM2-B2, respectively (see Table 2).

The combined topo-climatic models showed the best

explanatory capacity according to the AIC values, as well

as the best discrimination capacity according to AUC,

and classification performance according to Kappa, sensi-

tivity, specificity, and CCR. They were also the best cali-

brated models according to the Hosmer and Lemeshow

goodness-of-fit test, being the only models showing no

significant differences between the observed and the

expected proportions of presences in the different classes

of probability (Table 2).

All the models included variables with a VIF lower than

10, except those corresponding to the circulation model

CGCM2, which nevertheless do not seem to produce

inflated projections according to Fig. 5. The pure effect of

climate on the topo-climatic models of the species’ distri-

bution was always more important than the pure effect of

topography (Table 3). The shared effect of climate and

topography was always negative which indicates that the

effect of one factor is obscured by the other in the

amount expressed by the negative shared effect shown in

Table 3. The q value was always higher than 1 what indi-
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cates that the pure climatic factor is greater than the

apparent (see Table 3).

The fuzzy intersection between the topographic and cli-

matic models had an overall discrimination capacity simi-

lar to that of the topo-climatic model according to AUC

(0.836–0.855), better classification performance according

to Kappa (0.366–0.430), CCR (0.845–0.860), and specific-

ity (0.883–0.919), and worse sensitivity (0.448–0.579) that
those of the topo-climatic models.

The topographic model discriminated better in the

Mediterranean Spanish region than in the rest of Spain,

whereas the opposite was true for the climatic model

(Table 4). The topo-climatic model discriminated simi-

larly in both regions and was the best discriminatory

model in both areas, whereas the fuzzy intersection

between the topographic and climatic models discrimi-

nated worse in the Mediterranean region than in the rest

of Spain.

The future projections and the behavioral
plasticity

All AOGCMs-SRESs models forecasted an increase in cli-

matic favorability for the species, except HadCM2SUL

which yielded a favorability increment of I = �0.4366

and was not analyzed for a change in nesting behavior

using fuzzy logic. All models, regardless of whether they

assumed a further change in nesting habits, predicted

maintenance of the current favorability for Bonelli’s

eagle, but those assuming plasticity in nesting behavior

predicted notably larger increments in favorability

(Table 5).

The present favorability for Bonelli’s eagle and the pro-

jected future favorabilities according to the climatic con-

ditions forecasted for the year 2100 by each AOCGM and

SRES combination are shown in Fig. 5, assuming (1)

maintenance of current breeding habits mostly restricted

to mountainous areas, which presumes that the species

will only colonize those mountains becoming climatically

favorable or (2) capacity to evolve by breeding outside

mountainous regions in emerging climatically favorable

areas.

Discussion

Considering behavioral plasticity in species
distribution models

This study demonstrates that projected species-range

changes expected to occur under climate change could be

wrongly estimated if the capacity of species to adapt to

new conditions is completely ignored. Thus, it is likely

the number of species committed to future extinction or

to become severely threatened as a consequence of climate

change, in the coming years, may be not as high as recent

studies suggest (Thomas et al. 2004; Thuiller et al. 2005;

Sinervo et al. 2010; Barnosky et al. 2011; He and Hubbell

2011; Moritz and Agudo 2013).

Environmental changes have been shown to shift the

average phenotype of well-adapted populations further

from its optimal value, and thereby to reduce mean fit-

ness (Bell and Collins 2008). Species may adjust to these

changes through phenotypic plasticity, although if off-

spring encounter different conditions from their parents

and changes are too great to reproduce successfully or

survive, the population may decline (Bell and Collins

2008). But if the environmental change goes in the same

Figure 4. Current topographic and climatic favorabilities for

A. fasciata in Spain. Climatic favorabilities are calculated for each

AOGCM-SRES combination.
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direction as the vital needs of the species, the environ-

mental favorability may improve and, hence, favor popu-

lation increase and dispersion. If projections of climate

change, both of general circulation models and green-

house gasses are consistent, and the lack of topographical

favorability is compensated by an increase in climatic

favorability, an increase in the distribution of this endan-

gered species is expected. This would entail a behavioral

change in the species, that is, an alteration in nesting

requirements, including not only mountains that are cur-

rently unfavorable and will become favorable but also

lowlands, which are at present rarely occupied in the

studied area.

A general future increase in the environmental favor-

ability for Bonelli’s eagle in mainland Spain was pre-

dicted when using most combinations of AOGCMs and

SRESs. Although this result concerns only one species,

and thus, is not enough to warrant any generalization,

it agrees with those of Real et al. (2010) for another

mountain vertebrate species, the Iberian wild goat

Capra pyrenaica, and with those of Arag�on et al.

(2010), who predicted an increase in climatic favorabil-

ity for some Iberian vertebrates. The detailed analysis,

in which factors other than climate are considered

when assessing the effects of climate change, may pro-

vide cause for optimism in conservation, although there

are species for which adverse effects are predicted (Wal-

ther et al. 2002; Ara�ujo et al. 2011). An increase in

favorability in areas currently unfavorable may result in

an increase in the distribution of the species, but

extrinsic factors, such as biotic and anthropogenic

interactions, and factors intrinsic to the species, may

interfere in this process. Our models pinpoint areas of

emergent favorableness that greatly differ in favorability

if the possibility of the species to change their breeding

habits is considered or not.

At present, we find different nesting habits of Bonelli’s

eagle in relatively close areas. In southern Portugal, 94%

of breeding pairs are tree-nesters (Palma 2010), while in

southern Spain, this proportion is reversed, with more

than 95% of pairs breeding on cliffs. It is worth noting

that in both regions, both cliffs and forested areas can be

found. If climate change leads to increased climatic favor-

ability for the species in the near future, it would be rea-

sonable to consider the possibility of tree-nesting habits

to increase in Spain. The behavioral diversity for this

ecologically relevant trait already exists, as the necessary

requirement for the adaptive behavioral changes to occur.

Predicted favorability models offered in this study show

two extremes: one considering that the species will still be

linked to mountainous areas, and another assuming that

the species will take full advantage of the possibility to

breed on trees in Spain, as it already does in Portugal.

Likely, the species will follow a course between these

extremes, and only future monitoring of the population

will help to determine the extent to which behavioral

change occurs. In this regard, it would be interesting to

incorporate demography and dispersal into the model to

obtain more robust predictions to guide conservation

planning at both local and global scales (Moritz and

Agudo 2013).

The modeling approach

Predicting the future distribution of a species from a part

of its range, as we did, could be oblivious to the variation

in climate tolerance that is not present in the studied area

(Thuiller et al. 2004; Hattab et al. 2014). However, in a

global model, the relationship between climate and non-

climatic factors, and their separate and combined effects

on the species distribution, is averaged throughout the

species range (in this case from Portugal to China,

Table 2. Models obtained for each explanatory factor and values obtained to assess them. Variables codes as in Table 1.

Factor AOGCM-SRES Variables AIC Kappa Sens. Spec. CCR AUC H-L

Topographic A, A2, S, S2, OrS, OrW 3432.81 0.233 0.703 0.705 0.705 0.766 49.384*

Climatic HadAM3H PWi, Tsp, TSu,TWi 3410.30 0.199 0.543 0.760 0.733 0.758 35.338*

CGCM2-A2 PSp, PAu, TAu 3417.97 0.191 0.732 0.640 0.652 0.762 67.640*

CGCM2-B2 PSp, PAu, TAu 3416.58 0.192 0.732 0.641 0.653 0.762 67.545*

ECHAM4-A2/B2 PSp, PSu, PAu, PWi, TSp, TSu, TAu 3395.91 0.199 0.726 0.654 0.663 0.758 36.906*

HadCM2SUL PSp, PSu, PAu, PWi, TSp, TAu 3375.42 0.207 0.748 0.650 0.663 0.768 15.406*

Topo-climatic HadAM3H A, A2, S, S2, PSp, PWi, TAu 2856.91 0.363 0.773 0.785 0.783 0.855 6.734 n.s.

CGCM2-A2 A2, S, S2, PSu, PAu, PWi, TSp, TSu, TAu 2864.67 0.351 0.774 0.776 0.775 0.858 12.975 n.s.

CGCM2-B2 A, A2, S, S2, PSu, PAu, PWi, TSu 2865.11 0.352 0.776 0.776 0.776 0.857 7.533 n.s.

ECHAM4-A2/B2 A, A2, S, S2, OrW, PAu, TSu 2878.27 0.347 0.770 0.775 0.775 0.854 11.995 n.s.

HadCM2SUL A, A2, S, S2, PSu, PAu, PWi, TSp, TSu 2875.36 0.353 0.767 0.780 0.778 0.852 8.944 n.s.

Parsimony was assessed using Akaike information criterion (AIC), and goodness of fit was assessed with the Hosmer and Lemeshow test (H-L). *:

P < 0.01 and n.s.: P > 0.01. Cohen’s kappa, sensitivity (Sens.), specificity (Spec.), and correct classification rate (CCR) have been calculated using

the favorability value of F = 0.5 as the classification threshold and area under the receiver operating characteristic curve (AUC).
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including northern Africa and Indonesia), while some fac-

tors may be more (or less) critical than average in specific

zones of the species range. More importantly, our aim

with this manuscript was to consider the possibility of

including behavioral plasticity and evolutionary scenarios

in SDM, as a more realistic approach to the assessment of

the consequences of global change on species’ distribu-

tion. These evolutionary scenarios are driven by more

local characteristics and cannot be averaged over a global

scale, which makes the possibility of using a global model

less preferable in our approach. A global model updated

with Spanish data would take advantage of both pros

(global and regional) and could be preferable, but the dis-

tribution of the species is not well known at global scale

with necessary detail, and thus, this option is not cur-

rently available.

Species distribution models need to formulate the rela-

tionship between distributions and environmental vari-

Figure 5. Favorability forecasted at each

10 km 9 10 km UTM square of mainland

Spain for A. fasciata according to each topo-

climatic model and for each period. i:

assuming maintenance of current breeding

habits, restricted to mountainous areas and ii:

considering the capacity to evolve by breeding

outside mountainous regions in new

climatically favourable areas.

Table 3. Results of the variation partitioning of the topo-climatic favorability model for each combination of AOGCM and SRES. Values shown

are the percentages of variation explained exclusively by the pure topographic factor (PTF), by the pure climatic factor (PCF), and by their shared

effect (SCF). The p value indicates the proportion of pure climatic factor in relation to whole-climatic factor.

Model HadAM3H CGCM2-A2 CGCM2-B2 ECHAM4-A2/B2 HadCM2SUL

PTF 39.8 41.8 48.2 45.3 37.3

PCF 73.1 70.2 61.6 71.7 70.9

SCF �12.9 �12.0 �9.8 �17.0 �8.2

q 1.214 1.206 1.189 1.311 1.131
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ables explicitly to become appropriate tools to generate

hypotheses about how species respond to spatial and

environmental variability and to provide insights into the

potential response of species to regional climate change

(Moritz et al. 2008; M�arquez et al. 2011; Trivi~no et al.

2011). Our methodological approach to obtain models

for each explanatory factor guarantees that every variable

included in the model is significantly related to the spe-

cies distribution independently of the effect of other vari-

ables in the model. The use of a stepwise procedure for

combining different influential factors produced better

results according to AIC and AUC values than the use of

the explanatory factors considered independently and

provided a valuable approach to integrate different poten-

tial drivers of changes in species’ distribution in the

framework of climate change scenarios.

The entry order of the variables in the stepwise pro-

cedure provides additional valuable information, as this

order largely depends on the scale on which the vari-

ables operate, the first variables explaining broad-scale

distribution of the species and the last acting on finer-

scale (local) distribution patterns (see Fig. 3 in Mu~noz

et al. 2005). In the case of the topographic model, those

variables related to aspect entered at the end, which

suggests that these variables are decisive only at a more

local level. In the topo-climatic models, aspect tended

to be excluded, suggesting that it may be a surrogate of

(micro) climate, and so it may be redundant in a topo-

climatic model at this scale. This information on the

scale at which each factor is relevant is not retained in

the final function, as the values of the parameters asso-

ciated with each variable are reassessed according to the

collinearity with the other variables included in the

model.

The true role of topography and climate

Scale could also be considered relevant in the action of

climate and topography. Hattab et al. (2014), for instance,

applied the concept of “hierarchical filters” to combine

the predictions of a climatic and a topographic model

developed for two different spatial extents (global and

local), on the assumption than climate operate at a larger

spatial scale. In our case, the performance of the topo-

graphic and climatic models was very similar (Table 2),

which seems to indicate that both factors are operating at

the same scale within Spain.

The combination of factors produced better models

than the consideration of climate alone, which suggests

that topographic variables play an important role in

determining mountain species distribution, and its

dynamics over time. Davis et al. (1998) and Hattab et al.

(2014), for example, questioned the validity of climatic

models for forecasting future species distributions arguing

that many factors other than climate influence species’

ranges. Because of this, we considered more appropriate

to forecast future changes in environmental favorability

taking into account the relevant factors determining the

species’ distributions instead of building new models that

are based on climate change variables only. We recom-

mend assessing the additive importance of different

potentially influential factors on the distribution of spe-

cies before addressing the task of forecasting future

situations in climate change scenarios. It is important to

remark that in the combined models, the driving effect of

a changing climate may be compensated by the inertia

Table 4. Discrimination capacity for each model in Spain, the Spanish

Mediterranean region (consisting of Andalusia, Murcia, Valencia, and

Catalonia), and outside the Spanish Mediterranean region. Values of

AUC are shown.

Factor AOGCM-SRES

All of

Spain

Only Medit.

Spanish

region

Only

non-Medit.

Spanish region

Topographic 0.766 0.823 0.692

Climatic HadAM3H 0.758 0.669 0.740

CGCM2-A2 0.762 0.567 0.764

CGCM2-B2 0.762 0.570 0.765

ECHAM4-A2/B2 0.758 0.617 0.752

HadCM2SUL 0.768 0.610 0.755

Topo-climatic HadAM3H 0.855 0.837 0.833

CGCM2-A2 0.858 0.829 0.840

CGCM2-B2 0.857 0.831 0.837

ECHAM4-A2/B2 0.854 0.827 0.838

HadCM2SUL 0.852 0.835 0.830

Topog. ∩

Climat.

HadAM3H 0.836 0.787 0.821

CGCM2-A2 0.855 0.829 0.844

CGCM2-B2 0.855 0.829 0.845

ECHAM4-A2/B2 0.845 0.815 0.831

HadCM2SUL 0.849 0.829 0.824

Table 5. Values of the rates of increment (I), overlap (O), mainte-

nance (M), and shifting (S) of favorability forecasted for 2100 with

respect to the 1961–1990 period.

AOGCM-SRES I O M S

Maintaining the current breeding habits

HadAM3H 0.1235 0.8900 1.0000 0.0000

CGCM2-A2 0.0968 0.9117 1.0000 0.0000

CGCM2-B2 0.1592 0.8627 1.0000 0.0000

ECHAM4-A2 0.2795 0.7816 1.0000 0.0000

ECHAM4-B2 0.2523 0.7985 1.0000 0.0000

Assuming plasticity

HadAM3H 0.5175 0.6590 1.0000 0.0000

CGCM2-A2 0.3410 0.7426 0.9976 0.0024

CGCM2-B2 0.4800 0.6756 0.9999 0.0001

ECHAM4-A2 1.1711 0.4606 1.0000 0.0000

ECHAM4-B2 0.8987 0.5267 1.0000 0.0000

ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 2369

A.-R. Mu~noz et al. Incorporating Behavioural Plasticity to SDM



caused by more constant influential factors, such as

topography in our case.

Although the climatic and topographic models were

very similar in the values obtained in the assessing mea-

sures shown in Table 2, the pure effect of climate on the

combined models was more important than the pure

effect of topography in all combined models (Table 3). If

climate affects species’ distribution more than expected

according to the mere comparison of the climatic and

topographic models, species could be more responsive to

a change in climate, including a behavioral change, than

what intuition suggests. In our case, we could consider

the possibility that this eagle tended to occupy Mediterra-

nean mountains in Spain not mainly due to the topogra-

phy but mostly because these areas are climatically

favorable, and mountains happen to be prevalent in these

areas. This could explain why the percentage of breeding

pairs nesting on trees is so high in southern Portugal,

compared with Spain. In Portugal, Bonelli’s eagle would

also occupy areas climatically favorable, but in this case,

these areas are not so mountainous, and therefore, the

species tends to nest on trees. The higher discrimination

capacity of the climatic model outside the Spanish Medi-

terranean region compared with the topographic model

also suggests that it is the effect of climate, more than

that of topography, which is critical in restricting the dis-

tribution of the species there.

This approach could be used as such for mountain spe-

cies in general, which may be of particular interest given

that mountain ecosystems seem to be particularly sensitive

to global warming worldwide (Wilson et al. 2005; Pauli

et al. 2007). Wilson et al. (2007) and Gasner et al. (2010)

pointed out that mountain species ranges might respond

more rapidly to climate change because mountains often

retain more intact habitats than lowland landscapes, and

because these species can track climate change over shorter

distances. Taking into account, the topography might pro-

duce more realistic predictions in climate change scenarios.

Implications for future research

Currently, it is a challenge to include the behavioral

and physiological plasticity of species when modeling

species distribution and progress is needed in this

direction (Harvey et al. 2012; Pearson et al. 2014), espe-

cially when considering the potential consequences of

global change on endangered species. Being able to

accurately determine the potential adaptive response of

species would allow us to better predict their future sit-

uation and to optimally manage and protect wildlife

resources (Rapacciuolo et al. 2014). Ignoring phenotypi-

cal plasticity when projecting to the future, the changes

in environmental drivers normally under- or overesti-

mate the predicted consequences and effects on species

distributions. Our results indicate that it is possible to

consider different adaptive responses of species when

modeling the effects of climate change on species distri-

bution. Using this approach when possible, we could

strengthen the science behind conservation planning in

the present situation of rapid climate change.

Species distribution modelers rarely include phenotypi-

cal traits when characterizing species distributions and

evolutionary biologist rarely use the extensive data avail-

able about spatial environmental variation and climate

change. There is considerably more to be learned by

applying new methods that appropriately take into

account the potential of evolutionary processes. This is

especially of interest given that adaptive responses do not

need a long-time scale to occur (Thompson 1998; Van

Doorslaer et al. 2007; Sultan et al. 2012). Contemporary

evolution is probably more important than customarily

assumed and is likely to mediate the response of species,

populations, communities, and ecosystems to both grad-

ual and rapid environmental changes (Mergeay and Sant-

amar�ıa 2012). To our knowledge, this is the first study

including both the appearance of phenotypical adapta-

tions and the lack of behavioral changes in modeling the

effects of climate change on species distribution, produc-

ing local predictions of biogeographic change.

Many species have some phenotypic or behavioral plas-

ticity and evolutionary potential, and our approach allows

the inclusion of evolutionary scenarios into the model

projections to the future. In this respect, the approach

may be generalized for other species affected by other fac-

tors. Validation of this kind of results will require popula-

tion and genetic monitoring, and focused empirical

studies to assess and better understand the impact of cli-

mate change.
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