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ABSTRACT

Aim The way in which environmental conditions determine the distribution

and abundance of species is a crucial topic in ecology, biogeography and con-

servation. It is especially important to understand the nature of this relation-

ship regarding threatened species. The ability to forecast local densities over the

geographic range of species provides a way to link population ecology and bio-

geography. Particularly, our aim was to test whether predictions derived from

species distribution modelling data provide useful information on spatial pat-

terns of abundance and, consequently, may act as surrogates for local density

estimates.

Location Andalusia (southern Spain).

Methods Logistic regression and the favourability function were applied as

modelling tools to presence–absence data to compare the predicted results with

current abundance. This approach is useful in the identification of local priori-

ties for the target species whenever broad-scale surveys need to be performed.

Results The model included variables related to topography, vegetation and

spatial location to explain the presence of Bonelli’s eagle. A positive relation-

ship was found between both probability and favourability and the density of

this species, but a triangular fit only with favourability, suggesting that the

physiological and ecological requirements of this species in the study area are

better reflected in the favourability model.

Main conclusions We suggest that favourability models derived from pres-

ence–absence data provide insights into abundance data and valuable informa-

tion on carrying capacity over large scales. To minimize costs, maximize output

and optimize results, priority could be given to detecting the presence of the

species, instead of investing resources aimed at estimating abundance, which is

more expensive.

Keywords

Aquila fasciata, local density, probability of occurrence, quantile regression,

species distribution modelling.

INTRODUCTION

For many years, the link between species’ distribution and

abundance has been of great value and interest within the

fields of biogeography and ecology (MacArthur, 1960;

Brown, 1984), and it still remains an important and chal-

lenging issue (Passy, 2012). Spatial heterogeneity determines

gradients of habitat quality, which vary depending on the

focal species and may have profound effects on its distribu-

tion and abundance (Tilman & Kareiva, 1997; Newton,

1998). The way in which species use the available geographic

space is a key issue in conservation biogeography (Whittaker

et al., 2005), and differential spatial use may be inferred

from the known distribution of the species by applying spa-

tial modelling techniques (e.g. Guisan & Thuiller, 2005). Spe-

cies distribution models (SDMs) are increasingly being used
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to study the relationships between known occurrences of

species and the characteristics of the ecological and environ-

mental landscape and can ideally predict the most likely

areas for species presence (e.g. Guisan & Zimmermann,

2000; Peterson, 2006). The general aim of these studies is to

characterize the species’ ecological requirements and/or pre-

dict species distributions using occurrence data.

Knowing the density of a species is normally a prerequisite

for assessing the conservation status of any population,

although obtaining relevant abundance data is expensive and

time-consuming, and particularly costly when large-scale con-

servation strategies are considered. This is the reason why

many researchers have attempted to infer species’ abundance

from species’ occurrence (e.g. Nielsen et al., 2005, Estrada &

Arroyo, 2012; Van Couwenberghe et al., 2013; Ya~nez-Arenas

et al., 2014). Atlases are commonly used as sources of infor-

mation about species distribution due to the extent of their

geographic coverage (e.g. Ara�ujo & Williams, 2001; Ara�ujo

et al., 2005). The distribution in atlases is usually shown in

grids with different scales of resolution, 10 9 10 km being

quite common at the regional scale. However, although these

geographic data are important, they normally oversimplify

the processes driving range patterns and rarely provide associ-

ated information related to abundance within the species’ dis-

tribution (but see Estrada et al., 2004), which is fundamental

to ecology and conservation. Focusing conservation measures

on highly favourable areas could, for example, greatly favour

demographic processes such as adult survival or nesting suc-

cess. Consequently, the identification of high-quality habitat

for a species is a key target for conservation, although this

process normally requires intensive local-scale field studies

which normally produce results with local applications.

The relationship between abundance and distribution

range has been extensively studied in biogeography (e.g.

Andrewartha & Birch, 1954; Hengeveld & Haeck, 1982;

Brown, 1984; Maurer, 1994). Abundance may be determined

by limiting physiological variables or the ecological charac-

teristics of species (Sagarin & Gaines, 2002), which do not

always exhibit regular spatial patterns (Sagarin et al., 2006).

If these limiting factors are the same as those that also con-

dition species presence, then models accounting for species

occurrence could be useful in providing information on spe-

cies abundance. Given the difficulties in estimating the rela-

tive abundance across species’ range in terms of both budget

and logistics, a positive relationship between SDM outputs

and local abundance could be of relevance in conservation

biology and biogeography. If we assume that the most

favourable areas obtained with SDMs indicate the best envi-

ronmental conditions, then the values derived from the mod-

els should be a good proxy for species density. Thus,

determining species density within a species range based

solely on the presence–absence of the species would have

important applications, especially for endangered species,

and provide a powerful instrument to guide management

actions. In addition, this approach would provide strong

support for the use of SDMs (Lobo et al., 2008).

The Iberian Peninsula is an important wildlife region that

hosts about half of the European plant and terrestrial verte-

brate species (Williams et al., 2000). Andalusia is one of the

most important regions in the Iberian setting and harbours

population strongholds of many threatened European spe-

cies, such as the Iberian Lynx (Lynx pardinus). Andalusia is

also of particular interest regarding the role of raptors (D�ıaz-

G�omez et al., 2013), a group that has traditionally featured

prominently in conservation policies. At present, the autono-

mous region of Andalusia sustains 23 raptor breeding spe-

cies, representing 59% of the raptor species present in

Europe, although it represents less than 1% of its area. Bone-

lli’s Eagle (Aquila fasciata) is one of the most endangered

birds of prey in Europe, and about 35% of the European

population is found in Andalusia (Del Moral, 2006).

This article focuses on Bonelli’s eagle as a case study and

models its distribution using presence–absence data alone to

determine environmental favourability across its range. The

aim was to test whether favourability derived from the model

could be a surrogate for species abundance measured as the

number of observed occupied breeding territories per square

and whether it could also provide a current estimate of the

carrying capacity for breeding pairs. Its usefulness for mod-

elling and possible applications is discussed, especially in

relation to broad-scale conservation purposes.

METHODS

Study area

The autonomous region of Andalusia covers almost

87,600 km2 and is located in the southernmost part of main-

land Spain (Fig. 1). The main mountain ranges include the

Sierra Morena, along the northern fringe of the region, and

the Betic system, subdivided into two ranges, Sub-Betic and

Penibetic, which are oriented NE–SW and mainly occupy the

eastern part of the region. There is a strong elevational gradi-

ent, ranging from sea level to almost 3500 m.a.s.l. in the

Sierra Nevada. The most important plain is the Guadalquivir

valley, which is longitudinally oriented between Sierra

Morena and the Betic system. The climate is typically

Mediterranean, characterized by mild winters and severe

summer droughts. The mean annual temperature ranges

from 9.8 to 19.4 °C (Font, 2000), and rainfall is highly

heterogeneous with a marked decreasing gradient of precipi-

tation from west to east (maximum, 1800 mm; minimum,

170 mm). Climatic and orographic heterogeneity results in

high habitat diversity in Andalusia.

The species

Bonelli’s eagle is one of the rarest raptors in Europe. Although

it underwent a severe population decline of 20–50% in the

past, the population appears to have stabilized recently

(Rocamora, 1994; BirdLife International/EBCC 2000, Real,

2003; Del Moral, 2006; Hern�andez-Mat�ıas et al., 2013). The
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current estimated European population consists of 920–1100
pairs (BirdLife International 2004), of which approximately

35% are found in Andalusia (Del Moral, 2006). It is a priority

target species for conservation in Europe (Council Directive

79/409/EEC), and also in Spain (Real Decreto 439/1990).

Bonelli’s eagle is a medium-to-large, territorial, long-lived

raptor whose nominate subspecies fasciata ranges from India

and southern China to the Iberian Peninsula and NW Africa

with an irregular distribution (Del Hoyo et al., 1994). In the

Western Palearctic, it is a sedentary species largely restricted

to the Mediterranean region (Hagemaijer & Blair, 1997),

where it is mainly a cliff-nesting species. In Spain, 95.5% of

its territories are found in this substrate, whereas trees and

power lines are used by a small proportion of the species

(4% and 0.5%, respectively; Del Moral, 2006). In Andalusia,

94.7% of Bonelli’s eagles breed on cliffs and the rest in trees

(Mole�on, 2006).

Distribution and density data

Data on the presence–absence and number of Bonelli’s eagle

pairs in the 961 Andalusian UTM 10 9 10 km squares were

obtained from the comprehensive regional survey conducted

in 2005 (Consejer�ıa de Medio Ambiente 2006, Mole�on,

2006). We chose 10 9 10 km squares because this size is

considered to be a landscape scale and also because the home

range of breeding Bonelli’s eagles is typically smaller (L�opez-

L�opez et al., 2006). All territories known to have been occu-

pied by the species in previous years, as well as potential

breeding areas with cliffs and/or large trees, were prospected

at least twice during the 2005 breeding season (January–July)
to confirm occupancy (Consejer�ıa de Medio Ambiente 2006).

The intensive census effort conducted in 2005, together with

thorough knowledge of this population (periodic surveys

have been conducted for more than 20 years in several

provinces; Mole�on, 2006; Hern�andez-Mat�ıas et al., 2013),

mean that both the distribution and abundance data used in

this study are accurate. A total of 321 breeding pairs were

located, and the occurrence of the species was confirmed in

231 squares (prevalence of 0.24); abundance data are avail-

able for all squares (Fig. 2). Absence data can be considered

reliable, so the absence of the species from a UTM square

would be due to ecological, historical or anthropogenic rea-

sons, all of which are relevant factors in ecological studies.

Predictor variables

A total of 63 variables related to spatial location, topography,

climate, vegetation and human activity were used to deduce

the factors that influence the presence of Bonelli’s eagle in each

Andalusian UTM 10 9 10 km square. Table 1 shows 54 of

these variables, which were chosen on the basis of potential

predictive power and were assumed to be correlated with more

local causal factors (Guisan & Zimmermann, 2000). The

Andalusia

Iberian
Peninsula

Sierra Morena

Penibe c range

500 km

100 km

N

Figure 1 Study area. The most important valley and the main mountain ranges are shown in schematic form. Lighter colours show

lower altitude.

Figure 2 Species distribution and number of breeding pairs of

Bonelli’s eagle for the UTM 10 9 10 km squares in Andalusia.
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methodology used to obtain them was the same as that pre-

sented in Mu~noz et al. (2005) and M�arquez et al. (2011).

Geographic coordinates (latitude and longitude) were also

included in the model as a third-degree polynomial with

the form X + Y + XY + X2 + Y2 + X2Y + XY2 + X3 + Y3

(trend-surface analysis; Legendre & Legendre, 1998). Spatial

variables were included to reveal possible geographic trends

in species distributions associated with historical events or

species population dynamics (Legendre, 1993; Real et al.,

2003; Mu~noz et al., 2005; M�arquez et al., 2011). In addition,

the spatial location also conditions climatic variables

(M�arquez et al., 2004), so the true effect of climate must be

assessed in the context of the spatial influences on the species

distribution and on climate. The possibility of unimodal

responses of the species was taken into account by including

the quadratic function (A2, S2) of the topographic variables

altitude (A) and slope (S). The degree of southward exposure

(SE) and westward exposure (WE) was derived from Glob-

DEM50 high-resolution digital elevation data, which is based

on raw data from the Shuttle Radar Topography Mission

Table 1 Explanatory factors and variables used to model the

distribution of Bonelli’s eagle in Andalusia and their sources.

The quadratic function of the topographic variables altitude (A)

and slope (S) (A2, S2), and the third-degree polynomial of

geographic coordinates latitude (Lat) and longitude (Lon)

(XY + X2 + Y2 + X2Y + XY2 + X3 + Y3) are included.

Factors Code Variable

Spatial location Lat Latitude1

Lon Longitude1

Topo-hydrography A Mean altitude (m)2

S Slope (°) (calculated from altitude)

WE Westward exposition degree3

SE* Southward exposition degree3

ROff Mean annual run-off (mm)4

Perm Soil permeability4

Climate TJan* Mean temperature in January (°C)5

TJul Mean temperature in July (°C)5

Temp Mean annual temperature (°C)5

TRan Annual temperature range (°C)

(=TJul-TJan)

Prec Mean annual precipitation (mm)5

MP24 Maximum precipitation in

24 hours (mm)5

RMP Relative maximum precipitation

(=MP24/Prec)

DPre Mean annual number of days with

precipitation ≥ 0.1 mm5

PIrr Pluviometric irregularity5

SRad Mean annual solar radiation

(kwh m�2 day�1)6

HJan Mean relative air humidity in

January at 07:00 hours (%)6

HJul Mean relative air humidity in July

at 07:00 hours (%)6

HRan* Annual relative air humidity range

(%) (=|HJan-HJul|)

PET Mean annual potential

evapotranspiration (mm)6

AET* Mean annual actual

evapotranspiration (mm)

(=min[PET, Prec])

Humi* Humidity index7

Inso Mean annual insolation

(hours/year)7

Cont Continentality index7

DFro* Mean annual number of frost days

(minimum temperature ≤0 °C)7

DHai* Mean annual number of hail days7

DSno* Mean annual number of snow days7

Table 1 Continued.

Factors Code Variable

Vegetation and

land use

IHer Irrigated herbaceous crops

(% area)8

IWC* Irrigated woody crops (% area)8

DHer Dry herbaceous crops (% area)8

DHet* Dry heterogeneous crops (% area)8

IHet Irrigated heterogeneous crops

(% area)8

DWC* Dry wood crops (% area)8

Past* Pasture (% area)8

OakW Oak wood (% area)8

PWO Pasture with oaks (% area)8

PWC* Pasture with conifers (% area)8

DSWO Dense scrub with oaks (% area)8

SS Sparse scrub (% area)8

MCNV Mosaic of crops and natural

vegetation (% area)8

SSWO* Sparse scrub with oaks (% area)8

HCWO Herbaceous crops with oaks

(% area)8

DSWC* Dense scrub with conifers (% area)8

SSWC Sparse scrub with conifers (% area)8

SSWD Sparse scrub with diverse trees

(% area)8

DSWD Dense scrub with diverse trees

(% area)8

CW* Conifer wood (% area)8

DS* Dense scrub (% area)8

Wetl Wetlands (% area)8

Human activity BL* Built land (% area)8

DHi Distance to the nearest highway

(km)1

U500* Distance to the nearest town

with more than 500,000

inhabitants (km)1,9

Sources: 1I.G.N. (1999); 2US Geological Survey (1996); 3Shuttle

Radar Topography Mission (SRTM), Farr & Kobrick (2000);
4I.G.M.E. (1979); 5Agencia Estatal de Meteorolog�ıa of Spain

(AEMET), Ministerio de Medio Ambiente (www.aemet.es/es/el-

clima/cambio_climat/escenarios); 6Font (1983); 7Font (2000); 8Font

(2000); 9data on the number of inhabitants of urban centres were

taken from the Instituto Nacional de Estad�ıstica (http://www.ine.es).

*Variables that were not significant under an FDR of q < 0.05.
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(SRTM) (Farr & Kobrick, 2000). For the variable SE, a pixel

whose aspect was south was given the value 180, a

pixel whose aspect was north was given a value of 0, and

pixels with intermediate aspects (westward or eastward) were

given intermediate values. An analogous procedure was

followed for the variable WE. The variables related to vegeta-

tion cover and land use were obtained by transforming the

digital polygons into raster images, assigning each pixel to

the dominant land use. Regarding human variables, distance

to major urban centres and highways were taken into

account as well as the percentage of urban area.

Although the original spatial resolution adopted for all

variables was 1 pixel � 1 km2, the values of the variables in

the UTM 10 9 10 km squares were obtained by averaging

the 1 km2 pixel values within each square using the

EXTRACT module of the Idrisi32 software package (Clark

University, Worcester, MA, USA).

Distribution modelling and statistical analyses

We performed forward–backward stepwise logistic regression

using the presence–absence data as the dependent variable

and the different predictor variables as explanatory variables.

Thus, the probability of presence (P) across the region was

determined and subsequently the favourability value (F) for

each square applying the function described by Real et al.

(2006). This function yields values ranging from 0 to 1,

which are levelled in relation to the prevalence of the species

and hence are different from probability or suitability values,

and may be expressed as:

F ¼ ey=ðn1=n0 þ eyÞ
where F is the logit link of the favourability function, e is the

Neperian number, y is the logistic regression model equation,

and n1 and n0 are the numbers of presences and absences,

respectively.

In the final instance, a favourability model refers to the

environmental conditions that meet the physiological, eco-

logical and behavioural requirements of a species that ulti-

mately favour the presence of the species in the sampled

units (see Acevedo & Real, 2012).

The familywise error rate (i.e. the increase in type I errors

under repeated testing) was managed by controlling the false

discovery rate (FDR) (Benjamini & Hochberg, 1995; Garc�ıa,

2003) using the procedure proposed by Benjamini & Hoch-

berg (1995); only the variables that were significant under an

FDR of q < 0.05 were accepted. The combination of stepwise

selection and FDR control guarantees that every variable

included in the model is significantly related to the distribu-

tion of the species independently of the effect of other vari-

ables in the model. This is a useful and effective approach to

deduce distribution patterns inductively from observed data

when no theory or previous hypotheses exist on the impor-

tance of each variable (Guisan & Zimmermann, 2000).

Each predictor’s variance inflation factor (VIF) was used

to quantify collinearity between predictors in the models.

VIFs were calculated for each predictor as the inverse of the

coefficient of non-determination for a regression of that pre-

dictor on all others. VIF is a positive value representing the

overall correlation of each predictor with all others in a

model. The square root of the variance inflation factor indi-

cates how many times larger the standard error of a variable

is compared to what it would be if that variable was not cor-

related with the other independent variables in the equation

(see Zuur et al., 2010).

Variation partitioning

To facilitate the understanding of the model, variation parti-

tioning procedures were applied using the five factors

described in Table 1 (spatial location, topography, climate,

vegetation and land use, and human activity). The pure

effect of each factor was segregated from the variation simul-

taneously explained by two or more factors (shared effects).

We followed subtraction techniques similar to those of Bor-

card et al. (1992), Legendre (1993), Mu~noz et al. (2005) and

Real et al. (2013), thus enhancing the explanatory power of

each factor and improving the reliability and interpretation

of multiple regressions in the presence of multicollinearity

(Graham, 2003).

Model evaluation

Occurrence data were partitioned into a training and

prediction dataset. Partitioning was performed ten times,

each time leaving a different random subset of 10% of the

instances of presences and absences for prediction. A new

model was parameterized each time with the variables that

were finally selected in the model that was trained using the

complete occurrence dataset (previous sections). As a result,

a final predicted map was obtained and used to assess dis-

crimination capacity and calibration (Pearce & Ferrier, 2000;

Jim�enez-Valverde et al., 2013). Discrimination was evaluated

using the area under the ROC curve (AUC), and sensitivity,

specificity, positive predicted value (PPV) and negative pre-

dicted value (NPV) (Jim�enez-Valverde, 2014) were calculated

using the F value of 0.5 as a threshold (note that discrimina-

tion capacity is unaffected as F is a transformation of P that

maintains the order of the predicted values). To assess cali-

bration, the Hosmer and Lemeshow’s goodness-of-fit test

(Hosmer & Lemeshow, 2000) was performed. Predicted P

values were divided into intervals of fixed cut points, and the

calibration graph was also displayed. These analyses were

conducted in R version 2.13.0 (R Development Core Team

2011); the ROCR package version 1.0-4 (Sing et al., 2009) was

used to calculate the AUC.

Model validation

To validate the model, and the differential validity of P and

F to account for carrying capacity, we used abundance data,

which were different from the data used to build the model.
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The relationship between the P values derived from the 10-

fold partition (see below) and the number of breeding pairs

per UTM 10 9 10 km square was analysed. Firstly, Spear-

man correlation was calculated between the two variables;

this was conducted by using the entire dataset and also by

excluding locations with F ≤ 0.2 (see Mu~noz et al., 2005) to

test whether a positive significant correlation was simply the

product of the discrimination capacity of the model

(Jim�enez-Valverde et al., 2009; VanDerWal et al., 2009;

Guarino et al., 2012). Secondly, the relationship between P

and density is expected to be triangular; that is, low P values

would correspond to low numbers of breeding pairs, whereas

high P values would correspond to either low or high num-

bers of breeding pairs (see VanDerWal et al., 2009). This

means that P values would determine the maximum density

value achievable. To characterize this relationship, the num-

ber of breeding pairs was standardized between 0 and 1 and

quantile regressions were fitted as they are appropriate for

dealing with the unequal variation in ecological data due to

limiting variables (Cade & Noon, 2003). Linear quantile

regressions were fitted to the 50th, 55th, 60th, 65th, 70th,

75th, 80th, 85th, 90th, 95th and 99th percentiles, and the R1

measure (weighted sum of absolute residuals) was calculated

in each percentile as a local measure of goodness-of-fit

(Koenker & Machado, 1999). The same analyses were con-

ducted with the F values to verify whether these were more

closely related to the number of breeding pairs than the P

values. For visual comparison alone (see Jim�enez-Valverde,

2011), nonlinear quantile regressions were fitted to the 99th

percentiles following the equation y = [max(y)-exp(-bx)],

where y = number of breeding pairs and x = P or F. Analy-

ses were completed in R version 2.13.0 using the quantreg

package version 4.67 (Koenker, 2011).

RESULTS

Distribution models

We obtained a model with 14 predictor variables (Table 2).

The most important variables associated with the presence of

breeding territories of Bonelli’s eagle in Andalusia were those

related to topography, vegetation and spatial location. All

variables included in the model had a VIF lower than 10

with the exception of altitude, which had a slightly higher

value (10.023). Nevertheless, we decided to incorporate alti-

tude in the model due to the importance of topography in

explaining the distribution of this mountain species.

The breeding population tends to occupy mountainous

areas of medium altitude (200–1000 m.a.s.l.) dominated by

scrubland and located in the south-western part of the study

area. In Andalusia, climate seems to play a secondary role in

the distribution of the species. The highest probability and

favourability values for Bonelli’s eagle normally occur in the

Betic system (south and south-west of Andalusia), with some

squares in Sierra Morena. However, the probability map

shows a spatial discontinuity between the Betic mountains

and Sierra Morena, which are joined on the favourability

map (see Fig. 3). Discrimination capacity was high (AUC =
0.894, sensitivity = 0.775, specificity = 0.817) and the model

showed a slight tendency for overprediction (i.e. a tendency

to assign high favourability values to instances of absence),

as shown by the relatively low PPV (PPV = 0.574, NPV =
0.919). Although calibration was not perfect (H-L = 18.37,

P = 0.02), the low value of the H-L statistic and the graph

(Fig. 4) shows that calibration was acceptable.

There are 405 unfavourable squares (F ≤ 0.2, see Mu~noz

et al., 2005), of which 399 (98.52%) do not support the spe-

cies, and only in 6 (1.48%) of these squares is the species

present. Regarding favourable squares (F ≥ 0.8), 126 of 164

(76.83%) host Bonelli’s eagles, whereas in the other 38

squares, the species is absent. The intermediate-favourability

area (0.2 ≤ F ≤ 0.8) comprises 389 squares, of which 99

(25.45%) support the species.

Variation partitioning

Once the variables were grouped into factors, topography

alone had the most significant effect on the species distribu-

tion, followed by spatial location, vegetation and, marginally,

climate (Table 3). The variation of the model explained

exclusively by topography was even higher than its shared

effect with other factors. Some values of the overlaid effects

were negative, which indicates the amount of reciprocal

obscuring caused by factors that have opposite effects on the

explained variation.

Model validation

The correlation between P and F with the observed abun-

dance of Bonelli’s eagle in each square was positive and

Table 2 Variables included in the model and their coefficients

(b), standard errors (SE), Wald test values (Wald, 1943) and

significance (P). The variables are ranked according to their

order of entrance in the model. Variables codes as in Table 1.

Variable b SE Wald P

S 0.4302 0.0574 56.2065 <0.0001

A2 �3.47 E-6 6.17 E-7 31.7575 <0.0001

SS 3.6443 0.7140 26.0479 <0.0001

A 0.0048 0.0013 13.5722 0.0002

Lat3 �0.0003 0.0001 13.9347 0.0002

DSWO 3.8407 1.4180 7.3360 0.0068

TJul 0.3076 0.1484 4.2971 0.0382

Prec �0.4280 0.1582 7.3202 0.0068

IHet 6.9765 2.7215 6.5713 0.0104

Lon3 0.2634 0.0661 15.8641 0.0001

Lon 27.1256 6.6066 16.8581 <0.0001

Lon2 �4.7321 1.1600 16.6408 <0.0001

SSWC 3.3252 1.3402 6.1562 0.0131

PET 0.0077 0.0033 5.5156 0.0188

Constant �46.2771 12.8420 12.9858 0.0003
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statistically significant (rho P = 0.639, rho F = 0.606;

P < 0.001). There was still a significant positive correlation

when locations with F ≤ 0.2 were excluded (rho P = 0.554,

rho F = 0.525; P < 0.001), and thus, the relationship

between P, F and density was not a consequence of the high

discrimination capacity of the model.

The relationship between P and F and the density of

breeding pairs of Bonelli’s eagle showed that there was a

region in the upper left area of the plots that was effectively

impossible, that is, there were no locations with low P or F

values and a high number of breeding pairs (Fig. 5). In gen-

eral, R1 increased together with the percentile, although the

rate of increase from the 75th percentile onwards decreased

and even reverted in the case of P. The R1 values of P (range

0.109–0.439) were slightly higher than the values of F (range

0–0.461) except for the two highest percentiles (Fig. 6a). The

slopes of the linear quantile regressions were always signifi-

cantly different from 0 (P < 0.001) except in the case of F

and the 50th percentile of density (Fig. 6b). The slopes

increased together with the percentile, and although they

were slightly higher for P than for F, the 95% confidence

intervals for the two highest percentiles overlapped. The

intercepts were very close to 0 (although significantly differ-

ent; P < 0.05) for most percentiles, except in the case of the

95th and 99th percentiles for P and the 99th percentile for F;

in the case of the 99th percentile, the intercept for F (0.095)

was significantly less than the intercept for P (0.210)

(Fig. 6c). Finally, these results and the nonlinear quantile

regression fitted to the 99th percentile showed that the

Figure 3 Probability (a) and favourability (b) classes for the UTM 10 9 10 km squares in Andalusia (southern Spain). Black squares

represent a >4:1 probability–favourability that the area is favourable to the presence of Bonelli’s eagle (P and F ≥ 0.8); white squares

represent a >4:1 probability–favourability that the area is unfavourable to the presence of the species (P and F ≤ 0.2); and the grey

squares represent areas with intermediate probability–favourability (0.2 < P-F ≤ 0.4; 0.4 < P-F ≤ 0.6; 0.6 < P-F < 0.8).
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Figure 4 Calibration plot based on the P values (predicted

probability) derived from the 10-fold partition. Numbers

indicate the sample size of each probability interval. The

diagonal line represents the identity line.

Table 3 Variation partitioning of the final model. Values shown

are the percentages of variation explained by the indicated factor

and by their interactions. The unexplained variation of the final

model is R2 = 0.089.

%

Pure effect

Topography 22.1

Climate 1.7

Vegetation 9

Spatial location 10.5

Shared effects

Top + Clim 0.5

Top + Veget 18.7

Top + Spat 16.6

Clim + Veget �0.1

Clim + Spat �1.1

Veget + Spat �1.9

Top + Clim + Veget 0.7

Top + Spat + Veget 14.4

Top + Clim + Spat �0.7

Clim + Veget + Spat 1.7

Top + Clim + Veget + Spat �1.3
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relationship between F and density was almost triangular and

close to the identity line, which is not the case for P (Fig. 5).

DISCUSSION

Species distribution models are abstract constructions that

need to be connected with the natural history of species.

They are normally built to reflect the spatial distribution of

the biological characteristics of the populations, of which

species’ fitness is of special interest. This study demonstrates

a consistent relationship between predicted environmental

favourability and spatial variation in both occurrence and

abundance, which is of particular importance in ecology and

conservation. The predictions of the model closely match the

distribution of this endangered species in Andalusia, an area

considered the main stronghold for Bonelli’s eagle in Europe,

and also mark the upper limit of abundance in each square.

The high predictive potential of the model suggests that most

of the important factors, including the spatial distribution of

the habitat, are taken into account at this scale.

Our model is sufficiently complex to detect significant

trends in species distribution and abundance, yet sufficiently

simple to better comprehend the factors involved in shaping

them. The model suggests that favourable areas for the species

in Andalusia are mountainous, preferably located in the

south-eastern part of the region and hence characterized by

hot summers and low rainfall and covered by scrub as the

dominant vegetation. Mountainous areas, with the exception

of high mountains, are important in the distribution of the

species, as previously demonstrated at more local and large

spatial scales (Gil-S�anchez et al., 1996; Mu~noz et al., 2005,

2013; L�opez-L�opez et al., 2006; Carrascal & Seoane, 2009;

Mu~noz & Real, 2013), which confirms the strong reliance of

Bonelli’s eagle on areas with high availability of cliffs in which

to nest. The preference for patchy habitats, dominated by

Mediterranean scrubland in mosaic with conifers and oaks,

could be associated with the feeding habits of Bonelli’s eagle,

the diet consisting mainly of rabbits (Oryctolagus cuniculus)

and red-legged partridges (Alectoris rufa) in the study area

(Mole�on et al., 2012). The pure effect of spatial trend was the

second factor shaping the distribution of suitable areas for the

species, which may be linked to the dispersal and population

dynamics of the species or to interspecific competitive pro-

cesses. Andalusia has a large population of golden eagles (A.

chrysaetos), which have been shown to successfully compete

with Bonelli’s eagles. For instance, golden eagles limit both

the presence of territories (Gil-S�anchez et al., 1996) and the

breeding success of Bonelli’s eagle (Gil-S�anchez et al., 2004;

Carrete et al., 2006). However, golden eagles are more sensi-

tive to human disturbance than Bonelli’s eagles (Gil-S�anchez

et al., 1996). Thus, golden eagles are mainly restricted to the

largely inhabited range of Sierra Morena in the northern part
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of the region and to the highest parts of the mountains (Bau-

tista et al., 2006). Climate was a key factor in the national-

scale model (Mu~noz et al., 2005) and seems to play a sec-

ondary role in Andalusia. As climate is a factor that normally

changes over large areas, it may lose predictive power at a

scale in which the climate is primarily Mediterranean.

Favourability models can be transferred in space (Barbosa

et al., 2009) and thus could be used to infer carrying capac-

ity in distant areas, if the distant environmental conditions

are within the range of values of the predictors. Distribution

data for Bonelli’s eagle are incomplete in parts of the species

range; for example, there is a total lack of information on

abundance in neighbouring northern Africa. Our model has

a high descriptive capacity and could be transferred to

Morocco with a reasonable possibility of predictive success

after extrapolation in those areas inside the calibration range

of the favourability function. This could be a first step in

generating potential distribution and abundance maps and

could also help narrow the search for sampling points or

priority areas in regions where its distribution is less

documented, thus helping in population monitoring, wildlife

management and policy making.

In this article, we have used a specialist species, whose dis-

tribution is fairly well documented in the study area. How-

ever, the result would probably not have been the same if a

more generalist and widespread species had been used. There

are usually more gaps in the distribution data of common

species, which are usually located in more fragmented and

disturbed landscapes (Devictor et al., 2008), and tend to

have a high probability of occurrence and intermediate

favourability in almost every location. The generality of our

results should be tested by analysing some common species.

Nevertheless, the application of predictive modelling to

conservation planning is frequently needed for species of

conservation concern (typically specialist species), whose dis-

tributions are usually well known. The application of this

modelling procedure could help to recognize suitable habitats

for other endangered species throughout the study area. This

is of particular relevance given that Andalusia is home to

important populations of several threatened vertebrate spe-

cies, such as the Iberian Lynx or the Spanish Imperial Eagle

(Aquila adalberti), which are considered Critically Endan-

gered under the IUCN criteria (IUCN 2014), and that pres-

ence–absence data are far less expensive and easier to collect

than abundance data.

Although SDMs have been successfully used in a large

variety of studies, the relationship between the output of

presence–absence-based models and abundance has rarely

been assessed, and when this has been done, inconsistent

results have been obtained (see Pearce & Ferrier, 2001;

Nielsen et al., 2005; Jim�enez-Valverde et al., 2009; Real

et al., 2009; VanDerWal et al., 2009; Guarino et al., 2012;

Torres et al., 2012; Wilson, 2012; Guti�errez et al., 2013).

Given that SDMs reflect, in some way, environmental suit-

ability and that more individuals are assumed to inhabit

the most suitable areas (Sar�a, 2008; VanDerWal et al., 2009;

but see Van Horne, 1983), it would be of interest to deter-

mine the extent to which the occurrence-based suitability/

abundance relationship holds, so that conclusions based on

presence–absence models could be appropriately used to

identify areas of conservation concern. The model accu-

rately predicted ecogeographical favourability which, in

turn, proved to be a good surrogate for the carrying capac-

ity of each square.

Estrada & Arroyo (2012) found that favourability models

better described raptor breeding density for a territorial spe-

cies than for a semi-colonial one, highlighting the effect of

spacing behaviour on the relationship between favourability

and population density. Thus, the level of nest aggregation

may influence the connection between favourability and

abundance. Consequently, the carrying capacity of colonial

species should not be inferred from occurrence favourability

without the necessary adjustments.

A more detailed analysis of the results shows that the rela-

tionship between environmental favourability and density

indicates the maximum abundance instead of actual local

abundance (see Fig. 5b). VanDerWal et al. (2009) also found

that environmental suitability estimated from SDMs deter-

mined the maximum limit of density rather than mean

abundance (see also Torres et al., 2012 and Guti�errez et al.,

2013). A polygonal-shaped relationship between P and F and

the maximum density a square can support were obtained,

although the adjustment of F was clearly better for the upper

(95th and 99th) percentiles and closer to a triangular rela-

tionship. A triangular relationship means that in areas with

high favourability values, the species may or may not be

abundant (or even absent, which explains the relatively low

PPV), but in areas with low favourability values, species

abundance is always low, which makes the favourability val-

ues good indicators of the carrying capacity of the environ-

ment, understood in our case as the maximum number of

pairs that are able to breed.

The better fit of the model with F in comparison with P

may be due to the fact that F assesses the variation in occur-

rence by removing the effect of prevalence of the species in

the dataset (Acevedo & Real, 2012). The mathematical justifi-

cation for the favourability function was presented in the

study by Real et al. (2006), which demonstrated that proba-

bility depends both on the response of the dependent variable

(presence–absence of the species) to the predictors and on

the overall prevalence of the species, whereas favourability

values only depend on the response of the dependent variable

to the predictors in the study area. Eliminating the effect of

prevalence from the model output appears to improve its

capacity to account for the upper limit of local abundance,

making the favourability map a reliable surrogate for carrying

capacity. Thus, favourability should be used instead of proba-

bility to identify the carrying capacity of both common (high

prevalence) and rare (low prevalence) species in conservation

planning (e.g. when addressing predator–prey systems; Real

et al., 2009). The use of favourability makes models easier to

understand and also facilitates comparisons between species.
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An important challenge for future research is to test

whether the modelled environmental favourability for Bone-

lli’s eagle is also related to the performance of individuals (e.g.

measured in terms of age of breeding eagles), which has an

effect on demographic parameters such as breeding success.

The detection of optimal areas could provide results that

would be very useful to conservation policy, as Bonelli’s

Eagle is a species with deferred sexual maturity, has a

marked dispersal phase during the first years of life (Cadah�ıa

et al., 2010) and is able to settle as a breeder in areas far

from its birthplace (Cadah�ıa et al., 2009). Given that high-

quality territories may act as sources and indirectly have sink

territories through surplus offspring production (e.g. New-

ton, 1991), high-quality areas should be prioritized and

maintained to successfully conserve Bonelli’s eagle, rather

than focussing conservation efforts on poor sites. The latter

practice is common in Spain because the conservation status

of the species is clearly unfavourable in these areas, leading

the environmental authorities to concentrate economic

resources on them (see Mu~noz et al., 2005). This approach

may indirectly lead to the deterioration of key areas where

the species is abundant. Thus, effective conservation of the

most favourable areas would have far-reaching effects.

The fragmented spatial structure of favourable areas hints

at a possible metapopulation dynamics in southern Spain, as

found at larger scales by Mu~noz et al. (2005) and Hern�an-

dez-Mat�ıas et al. (2013), which may also affect the organiza-

tion and prioritization of Bonelli’s eagle conservation efforts.

Unoccupied favourable areas, for example, may correspond

to territories that are not occupied every year but which may

be recolonized, such as those reported by Pedrini & Sergio

(2002) in the Alps for the golden eagle; thus, these areas

should also be of conservation concern.

This kind of explicit environmental model may help to

locate areas of special interest for endangered species. In cir-

cumstances with limited financial resources, priority should

be given to the more favourable areas, whose confirmed

higher density, and probably higher offspring production,

may favour persistence in intermediate- and low-favourabil-

ity areas through dispersal processes. There are a significant

number of territorial specialist species with well-known dis-

tributions, and therefore, these results could have broad

implications. The favourability concept seems to be helpful

to understand connections between large-scale models and

local population dynamics, which would lead to more effi-

cient site protection and habitat management, and make

conservation efforts more cost-effective, provided that it

takes local habitat quality into account.
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