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ABSTRACT

Population models have played a chief role informing management decisions for the
endangered Bonelli’s eagle (Aquila fasciata) in Spain. In this paper, we incorporate spatial
structure and stochasticity in the construction of individual-based metapopulation mod-
els, and use these models to explore the effects of possible management actions on the per-
sistence of the species in Spain. To build the models we used data on seven sub-
populations that have experienced different trends in the last decades, and we introduced
new estimates of pre-adult survival rate. The elasticity analysis of our models showed that
when the interchange of individuals among sub-populations is taken into account, pre-
adult mortality plays the key role in determining the overall population trend. This is in
contrast to what it has been suggested by previous demographic models that modelled
local populations as isolated. Specifically, a 20% decrease in pre-adult mortality during
the first two years of life was enough for the stabilization of the metapopulation (i.e.,
/> 1.0). However, neither a similar decrease in the values of adult mortality, nor an
increase in the percentage of breeders, modified the declining trend of our model metapop-
ulation. This reinforces the idea that to ensure the long-term persistence of the species in
Spain, management actions should aim at minimizing pre-adult mortality. These include
locating and protecting the areas used by juvenile Bonelli’s eagles (e.g., temporary settle-
ments), minimizing the risk of electrocution in power lines, and preventing human
persecution.

© 2008 Published by Elsevier Ltd.

1. Introduction

fects of those factors on populations’ trajectories
(Lindenmayer et al., 1995; Hanski, 1999). For stage-structured

During the last decades there has been an increasing aware-
ness of the roles of space and environmental and demo-
graphic stochasticity in populations’ dynamics (e.g., Tilman
and Kareiva, 1997; Hanski, 1999; Lande et al., 2003), with com-
puter simulations playing a key role in the analysis of the ef-

populations an alternative to simulations for projecting pop-
ulation trajectories is the use of matrix population models
(e.g., Caswell, 2001). These matrix population models have
been influential in the derivation of management recommen-
dations for many endangered species (e.g., Crouse et al., 1987;
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Ferrer and Calderdn, 1990; Ferrer and Hiraldo, 1991; Hiraldo
et al.,, 1996; Hitchcock and Gratto-Trevor, 1997; see Caswell,
2001 and references therein). In Spain, population models
have played a chief role informing management decisions
for the endangered Bonelli’s eagle (Aquila fasciata) (Real and
Mafiosa, 1997; Carrete et al., 2002).

Bonelli’s eagles are distributed from the European Mediter-
ranean region to south-east Asia (Cramp and Simmons, 1980;
Ferguson-Lees and Christie, 2001). The Iberian Peninsula
holds approximately 80% of the European breeding pairs
(Del Moral, 2006) and yet the species is currently considered
as Endangered in Spain (Real, 2004). After a period of decline
in the mid-1980s in the Iberian Peninsula (Real and Mafiosa,
1997; Real, 2004), it seems to have recovered, although its cur-
rent status is object of debate (Del Moral, 2006; Cadahia et al.,
in press). The Iberian population shows different trends in
different parts of the Peninsula. Whereas sub-populations lo-
cated in the southern and eastern regions seem to be increas-
ing or stable, sub-populations from the central plateau, north-
eastern Portugal and northern Spain seem to be decreasing
(Balbontin et al., 2003; Real, 2004; pers. obs). There are also
differences in the main causes of mortality among regions
and age classes. Thus, whereas non-breeding individuals
mostly die because of electrocution, adults are mainly the vic-
tims of persecution (Real et al., 2001). These differences are
associated with differences in the spatial distribution of age
classes: persecution is the main cause of death in breeding
areas and electrocution in non-breeding areas (Real et al.,
2001).

Despite Bonelli’s eagles perform large movements during
their juvenile dispersal (Balbontin, 2005; Cadahia et al., 2005;
Cadahia, 2007), previous demographic models have been
based on the unrealistic assumption that sub-populations
are isolated, considering no movements of juveniles among
them. This is clearly not the case, with a source-sink meta-
population dynamics being a more appropriate description
of the dynamics of the species in the Iberian Peninsula (Mu-
floz et al., 2005). Here, we incorporate spatial structure and
stochasticity in the construction of individual-based meta-
population models (as opposed to a fragmented population
framework with no connectivity among sub-populations)
and use these models to explore the effects of possible man-
agement actions on the persistence of the species in Spain.

2. Methods

We used the Vortex simulations software (Lacy, 1993, 2000;
Lacy et al., 2005) to develop models of the population dynam-
ics of Bonelli’s eagles in Spain that incorporate the effects of
spatial structure, and both environmental and demographic
stochasticity. Vortex is an individual-based simulation model
for population viability (Lacy, 1993, 2000; Miller and Lacy,
2005). It models population dynamics as discrete, sequential
events that occur according to probabilities defined by the
user. Populations are modelled using constants or random
demographic variables that follow specified distributions
(actually, once the demographic parameters to be used for
the simulations are introduced in Vortex, it also builds a
deterministic matrix model of the population). Vortex was
originally written to model mammalian and avian popula-

tions. The events used for modelling describe the typical life
cycle of sexually reproducing, diploid organisms, and it is par-
ticularly suitable for species and populations like the one we
model here: low fecundity, long lifespan, local populations
size less than 500 individuals, less than 20 local populations,
estimable age-specific fecundity and survival rates, and
monogamous breeding (Lacy, 1993, 2000; Miller and Lacy,
2005).

To explore the role of spatial structure on the dynamics of
the population of Bonelli’s eagles in Spain we used data on se-
ven sub-populations (defined on the basis of administrative
boundaries): Murcia, Toledo, Castellén, Burgos, Navarra, Cadiz
and Granada (Fig. 1). Although these do not encompass the
whole Iberian population they are representative of the differ-
ent local trends experienced by the Spanish population in the
last decades. We first used demographic parameters from the
bibliography (Tables 1 and 2) to create a deterministic matrix
population model for each sub-population. Because available
estimates on pre-adult mortality are scarce and highly inac-
curate, we improved the model using our own data on the
mortality of 15 juvenile eagles tracked by satellite telemetry
during their juvenile dispersal (Cadahia et al., 2005, 2007).
We assumed that birds were dead when signal reception
was terminated. This is actually an overestimate of mortality
rate, as not all birds were confirmed dead. For computational
purposes, the mortality after the 2nd year of dispersal was set
as the mean (+SD) adult mortality calculated for the seven
sub-populations (see Tables 1 and 2), as for the birds that
we were still tracking after the 2nd year of study, signal recep-
tion continued for the rest of the juvenile dispersal. Due to the
scarcity of available data, heterogeneity in pre-adult survival
rate was not incorporated in the models.

To assess the effect on populations’ persistence of differ-
ent levels of connectivity among the local populations we
modelled four different scenarios: (a) seven isolated popula-
tions, (b) a metapopulation where dispersers have the same
probability (14.29%) of settling in any of the seven local popu-
lations, (c) a metapopulation where dispersers cannot remain
in their natal population but have equal probability (16.67%)
of dispersing to any of the other six local populations, and
(d) a metapopulation where dispersers cannot remain in their
natal population and the probability (ranging from 9% to 36%)
of dispersing to any of the other six populations is inversely
proportional to the distance from the natal population. Dis-
tance among all local populations was calculated as the dis-
tance among the centroids of the region encompassing each
local population.

We introduced stochasticity in these models by simulating
50-years population trajectories under the four spatial scenar-
ios described (taking 1994 as the fist year of the simulations).
A total of 500 simulations were run for each scenario. Simula-
tions were conducted using both our own data on pre-adult
mortality, and those from the literature (i.e., 22% for the first
year and 59% for the remaining three, assuming for simplicity
that for the whole first year survival rate is as high as pre-dis-
persal survival rate; see Table 1). The effects of environmental
variability in survival and reproduction were modelled as
non-correlated. The potential effects of inbreeding depres-
sion, density-dependent reproduction, catastrophes, harvest-
ing, supplementation, and genetic management (Lacy, 1993,
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Fig. 1 - The Iberian Peninsula including Spain and Portugal. The seven sub-populations analysed are shown in grey.

2000; Lacy et al., 2005; Miller and Lacy, 2005) were not included
in the simulations.

Finally, to evaluate the sensitivity of the projections of the
metapopulation models to changes in the demographic
parameters estimates, we conducted an elasticity analysis
(Caswell, 2001) of the individual-based model built with our
data on pre-adult mortality, and the spatial structure of sce-
nario b, characterized by an equal probability of dispersing
to any of the populations (including the natal one). Although
this is likely unrealistic, in absence of more detailed under-
standing of the dispersal behaviour of the species, we con-
sider this scenario provides a convenient trade-off for
exploring the effects of alternative management decisions
(vet, without incorporating sexual stochasticity and density-
dependent effects on fecundity, the model is probably too
simplistic to derive long-term predictions on population
sizes).

Elasticity analyses are a useful tool to explore the conve-
nience of alternative management strategies and provide
valuable insights on the effect of estimates inaccuracy on pro-
jected population trajectories (Ferrer and Calderén, 1990; Fer-
rer and Hiraldo, 1991; Mills et al., 1999, 2001; Caswell, 2000;
Heppell et al., 2000). Possible management strategies to im-
prove Bonelli’s eagle population size include decreasing adult
and pre-adult mortality, and increasing the proportion of suc-
cessful breeders. Therefore, we calculated the effects on pop-

ulation growth rate (1) of a proportional decrease of 5%, 10%,
20%, 25%, and 30% in the mortality of adults and pre-adults,
and the same proportional increases in the proportion of suc-
cessful breeders. Parameters were modified one at a time. All
other parameters of the model (including SD of adult and pre-
adult mortality) were kept unchanged. Note that the propor-
tion of successful breeders was never allowed to be higher
than 100%.

To estimate population trajectories we evaluated both the
probability of population extinction (PE, the proportion of the
500 iterations in which the population went extinct) and the
expected annual rate of population growth (1). Comparisons
among models were conducted using the Wilcoxon test (Zar,
1984).

3. Results

For the seven sub-populations, breeding success ranged from
8.30% to 86.59% (mean = 67.27%; SD = 27.02%). The percentage
of pairs rising one and two chicks ranged from 33.33% to
75.00% (mean =47.08%; SD =15.31%), and from 25.00% to
66.70% (mean =>52.92%; SD =15.31%), respectively. Annual
adult mortality ranged from 3.29% to 16.10% (mean = 8.53%;
SD =4.53%) (Table 2). Considering the seven sub-populations
as a single metapopulation, the initial population size was
142 pairs.

doi:10.1016/j.biocon.2008.01.011
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Table 1 - Parameters used to construct individual-based models for the analysis of Bonelli’s eagle population viability in

Spain

Parameter Reference

Dispersing classes age range® 1-4 years Ferguson-Lees and Christie (2001)
Survival of dispersers® 100%

Dispersal rates See text for details

reproductive system Monogamous Ferguson-Lees and Christie (2001)
Age of first offspring® 4 years Ferguson-Lees and Christie (2001)
Maximum age of reproduction 25 years Real and Marfiosa (1997)
Maximum number of progeny per year 2 chicks Arroyo et al. (1995)

Sex ratio at birth (% males) 50%

Mean and SD of females breeding (%)

Mean and SD of the% of successful pairs reported
for localities within each of the seven regions

Gil-Sanchez et al. (2004), Arroyo et al. (1995),
Lopez-Lopez et al. (2007b)

Mean of the % of nests with 1 or 2 chicks as
reported for localities within each of the 5 regions
Equal number of males and females, all with 4
years of age

500 individuals

100%

Number offspring per female per year Balbontin and Ferrer (2005)
(% in each class)

Specified age distribution

Carrying capacity (K)
Males in breeding pool (%)
Initial population size MU:18; TO:10; CS:26; BU:12; NA:6; GR: 30; CA: 40
Female mortality from age 0 to 1 (%) 22 (0)/50 (0)
Female mortality from age 1 to 2 (%) 59 (0)/71 (0)

(%)

(%)

Del Moral (2006)
Real and Mafiosa (1997)“¢ / own data®®
Real and Mafiosa (1997)%¢ / own data®*®
Female mortality from age 2 to 3 (%, 59 (0)/8.53 (4.68) Real and Mafiosa (1997)%¢ / own data®®
Female mortality from age 3 to 4 (%, 59 (0)/8.53 (4.68) ( )
Female mortality after age 4 (%) Mean and SD of the mortality (1-Sb) reported for ( )
localities within the regions considered. For
Toledo we calculated it as the mean and SD of the
values used for the other six regions

Real and Mafiosa (1997)%¢ / own data®®
Real and Manosa (1997

Abbreviations: MU: Murcia; TO: Toledo; CS: Castelldn; BU: Burgos; NA: Navarra; GR: Granada; CA: Cadiz. Se: Young pre-dispersal survival rate;

Sn: pre-adult annual survival rate; Sb: annual adult survival rate.

a Both sexes.

b Dispersers mortality is already considered in the estimate of pre-adult mortality, thus, no additional mortality was introduced.

¢ Survival from age 0 to 1 was assumed as that of pre-dispersal individuals (1-Se). Survival from 1 to 4 as 1-Sn.

d Mean (SD).

e Survival from age 0 to 1 and 1 to 2 as observed from our data; survival from age 2 to 3 and 3 to 4 was assumed as the mean and SD adult
mortality in the seven regions we analyzed.

Table 2 - Summary of demographic parameters employed for modelling seven Spanish populations of Bonelli’s eagle

Population Murcia Toledo Castellon Burgos Navarra Granada Cadiz
Breeding success 74.86 69.36 82.40 8.30 66.70 86.59 82.68
SD breeding success 9.78 24.58 7.70 — — 6.37 32.50
% Nests with 1 chick 39.70 44.70 61.11 33.33 75.00 35.45 40.30
% Nests with 2 chicks 60.30 55.30 38.89 66.67 25.00 64.55 59.70
Adult mortality (>4 years) 16.10 8.53 12.87 6.73 7.60 3.29 461
SD adult mortality 12.25 4.68 6.76 2.24 - 3.24 0.21
No. of pairs in 1994 18 10 26 12 6 30 40
No. of pairs in 2005 22 10 27 3 3 52 40

a Del Moral (2006).

When the sub-populations were modelled as isolated (sce-
nario a), the estimated population trends varied significantly
depending on the source of the data. Considering the esti-
mates of Real and Mafiosa (1997), pre-adult survival (from
hatching to first breeding) is only 5.4%, whereas when our
data on satellite-tracked individuals is considered, pre-adult
survival is 12.1% (see Table 1). Consequently, when data on
pre-adult mortality obtained from the literature were used,
all the populations showed declining trends (4 < 1.0). In con-
trast, when our values of pre-adult mortality were introduced

the trend reverted in two of the sub-populations (1> 1.0 for
Granada and Cadiz) (Table 3). Actually, when the values of
pre-adult mortality obtained from the literature were used
to construct both the deterministic and stochastic models,
population growth rates were slightly lower than those re-
ported by Real and Mafiosa (1997) (in both cases: Z =1.83;
p =0.07; n =4). In contrast, when they were constructed using
our own data on pre-adult mortality, population growth rates
were larger than those reported by Real and Mafiosa (1997)
(Z=2.37; p=0.018; n=7). The probability of extinction (PE)

doi:10.1016/j.biocon.2008.01.011
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Table 3 - Deterministic and stochastic estimates of annual rate of population growth (1) and probability of extinction (PE) in

50 years of Bonelli’s eagles in Spain

Population Reported Deter- Stochastic LCI® UCI® PE® Deter- Stochastic LCI® UCI® PES
22 ministic /° ° ministic 1€ A°
Scenario a Murcia 0.912 0.861 0.900 0.879 0.922 1.000 0.920 0.919 0.899 0.939 1.000
Toledo - 0.908 0.949 0.927 0.972 0.998 0.965 0.968 0.949 0.987 0.904
Castellon 0.913 0.881 0.909 0.891 0.928 1.000 0.939 0.933 0.917 0.950 0.964
Burgos 0.952 0.818 0.938 0.923 0.953 1.000 0.855 0.941 0.928 0.954 1.000
Navarra 0.973 0.900 0.963 0.941 0.985 1.000 0.952 0.971 0.952 0.991 0.978
Granada - 0.965 0.973 0.959 0.987 0.240 1.025 1.029 1.022 1.037 0.000
Cadiz - 0.950 0.956 0.937 0.976 0.560 1.009 1.008 0.995 1.021 0.000
Scenario b Metapopulation - - 0.905 0.890 0.920 0.982 - 0.943 0.933 0.952 0.130
within populations - - 0.945 0.910 0.980 0.999 - 0.964 0.928 1.001 0.763
Scenario ¢ Metapopulation - - 0.906 0.891 0.921 0.976 - 0.942 0.932 0.951 0.190
within populations - - 0.946 0.908 0.984 0.999 - 0.965 0.926 1.005 0.789
Scenario d Metapopulation - - 0.904 0.889 0.919 0976 - 0.942 0.932 0.951 0.168
within populations - = 0.944 0.906 0.982 0.999 - 0.964 0.925 1.004 0.777

Spatial structure and - stochasticity are considered by modelling seven populations as isolated (scenario a) and three scenarios with phy-
lopatry and different probabilities of natal dispersal among populations (scenarios b, ¢ and d; see Methods). Abbreviations: LCI (lower confi-

dence interval), UCI (upper confidence interval).
a Expected 2 reported by Real and Mariosa (1997).

b Calculated using values of demographic parameters taken from bibliography (see Methods section).
¢ Calculated using values of demographic parameters taken from our data and bibliography (see Section 2).

was also lower (Z=2.02; p=0.043; n=7) when we incorpo-
rated our estimate of pre-adult mortality, than when we used
the values from the literature (Table 3).

One of the consequences of considering sub-populations
as isolated is that even with our estimates of pre-adult mor-
tality, the populations of Burgos and Murcia are predicted to
become extinct in the next 50 years (PE equal to 100% in both
cases) (Table 3), with the chances of those of Toledo, Castellén
and Navarra following the same fate (PE higher than 90% in
the three cases) (Table 3). In contrast, when sub-populations
are modelled as part of a metapopulation (i.e., individuals
are allowed to move among populations - scenarios b, ¢ and
d), the sub-populations that go extinct are later re-colonized,
with the probability of extinction of the whole metapopula-
tion in the next 50 years being less than 20% (range = 13-
19%) (Table 3).

The effect on population trajectories of individuals’ move-
ment, and more remarkably, the effect of decreasing dispers-
ers’ mortality, becomes evident when the elasticity analysis
of one of these metapopulation models (scenario b) is consid-
ered. Whereas a proportional 20% decrease in the values of
pre-adult mortality during the first two years of life allows
for the stabilization or increase of the metapopulation (i.e.,
A = 1.0), neither a decrease in adult mortality, nor an increase
in the percentage of breeders changes the declining trend of
the metapopulation (Fig. 2). For example, a 5% decrease in
pre-adult mortality has an effect on / that is more than two
times that obtained with the same proportional decrease in
adult mortality (e.g., AA=0.013 in pre-adult mortality vs.
AA=0.005 in adult mortality when changing from 20% to
25%), and more than four times that obtained with an increase
in the percentage of breeders (A/ = 0.003) (Fig. 2), highlighting
the importance of pre-adult mortality when stochasticity
and the spatial structure of the population are considered.

4, Discussion

Here we present the results of modelling the dynamics of
some representative populations of Bonelli’s eagles in Spain.
As we only consider a fraction of all the pairs breeding in
Spain, rather than aiming at projecting the overall trend of
the species in the country, what we aim to do here is to eval-
uate which management strategies may provide the highest
reward in terms of population persistence. The main limita-
tions of extant population models in Spain are the assump-
tion of closed populations and the uncertain accuracy of the
estimates of pre-adult survival rate they are based on (e.g.,
Real and Mafiosa, 1997). Here we attempt to overcome these
limitations incorporating spatial structure and stochasticity
in our models, and introducing new estimates of pre-adult
survival. The main novelty of our models is the conclusion
that pre-adult survival, rather than adult survival, has the
largest impact on population growth rate (i.e., on our model
metapopulation growth rate). This has important implica-
tions for management and conservation at the national scale.

First, a basic expectation of metapopulation models is that
local populations eventually go extinct and are re-colonized
later (Hanski, 1999). Thus, from conservation point of view,
to observe declines at local scales is not a sufficient reason
for concern. Moreover, to observe differences in the trajecto-
ries of local populations is actually good news, as it suggests
that local dynamics are relatively uncoupled, which is a major
determinant of metapopulation persistence (Hanski, 1999).
Second, the differences in the probability of extinction esti-
mated when we used our data on pre-adult mortality, com-
pared with that obtained when we used the figures provided
by Real and Mafiosa (1997), highlight the need to be cautious
when predicting populations trends and assessing the status
of the species in Spain. Unfortunately, reliable estimates of

doi:10.1016/j.biocon.2008.01.011
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Fig. 2 - Elasticity analysis showing the variation in the annual rate of population growth (/) resulting from proportional
changes in pre-adult mortality, adult mortality and percentage of breeders.

the value of this parameter, which is key to understand the
dynamics of the species at a national scale, are not currently
available. Although the pre-adult survival of 12.1%, we used is
more than twice that estimated from Real and Mafiosa (1997)
(actually, as two of the 15 individuals tracked were confirmed
alive after their fourth year of life, observed survival rate was
13.3%), it is well below the 18.7% estimated by Carrete et al.
(2002).

The relevance of pre-adult survival is reinforced by the fact
that a 20% decrease in mortality during the first two years of
life allowed the stabilization of our metapopulation (i.e.,
4 > 1.0). In contrast, neither a decrease in adult mortality,
nor an increase in the percentage of breeders, changed its
declining trend. From a management perspective, aiming at
improving pre-adult survival is not unreasonable, as the rate
currently observed is low for large raptors (e.g., Whitfield
et al., 2004 and references therein). This reinforces the idea
that it is a consequence of human-mediated activities, rather
than a characteristic of the species, and management actions
aimed at improving dispersers’ survival might boost the pop-
ulation into an upper trend.

In contrast, increasing the proportion of breeders or
decreasing adult mortality did not allow the stabilization of
our metapopulation (Fig. 2). Furthermore, a proportional in-
crease of 30% in the percentage of breeders is actually impos-
sible, as for some populations this implies that the proportion
of breeders would have to be larger than 100%. This has
important implications for translating the results of elasticity
analysis into sensible management prescriptions. The suc-
cess of management actions focused on a single parameter
depends on whether that parameter is altered in relation to
that of a healthy population, and whether it is amenable to
human alteration (Hiraldo et al., 1996). This includes how

far it is from its potential maximum, and the feasibility and
economic cost of implementing actions to take the parame-
ters to the desired values (Hiraldo et al., 1996; Hitchcock and
Gratto-Trevor, 1997; Caswell, 2000; de Kroon et al., 2000; Bax-
ter et al., 2006). A parameter giving a low elasticity may even
provide the only feasible (or maybe a cheaper) means of
increasing the population growth to the desired value (Cas-
well, 2000; Ehrlén et al., 2001). Thus, the magnitude of the pro-
portional change in the parameters that is needed to achieve
a desired population growth is less relevant than the actual
possibilities of producing that change, with those parameters
further away from their potential maximum being those on
which on theoretical grounds it is possible to make a larger
improvement.

Unfortunately, despite words of cautions regarding the
interpretation of their results for conservation purposes
(e.g., Real and Manosa, 1997; Mills et al., 1999, 2001; Caswell,
2000, 2001; Heppell et al., 2000), the outcomes of matrix pop-
ulation models’ elasticity analyses have often been almost
blindly interpreted as a clear recommendation of focusing
conservation action on the parameter with the highest elas-
ticity. In our case, the recommendation of investing more ef-
forts in enhancing pre-adult Bonelli’s eagle’s survival in Spain
is not only based on the fact that it is the parameter with the
highest elasticity, but also on practical grounds, as pre-adult
mortality is the parameter with the largest potential to be
managed and, consequently, to improve the metapopulation
trend. This is a different conclusion from that suggested by
previous analyses that identified adult mortality as the main
determinant of population trend (Real and Mafosa, 1997;
Carrete et al., 2002).

We suggest this difference is because previous studies
modelled Bonelli’s eagle populations as isolated. Territorial
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occupancy models as that developed by Carrete et al. (2002)
are actually more appropriate when the overall population
viability is more dependent on within-population dynamics
(birth rates and death rates), than on between-population
dynamics (patch extinction and colonization rates) (Carrete
et al, 2002). Thus, it is not surprising that, given their
assumption that within-population processes play the chief
role in driving population trends, adult mortality is identified
as the parameter with the largest impact on these trends. Yet,
in populations interconnected by the flux of dispersers, as it
seems to be the case in Bonelli’s eagles (Cadahia et al., 2005,
in press; Cadahia, 2007), the fate of dispersers has a much lar-
ger impact on the populations than expected by closed popu-
lation models.

Consequently, we suggest that conservation strategies for
the species in Spain should seek to ensure that pre-adult mor-
tality decreases. Among other reasons because (a) pre-adult
mortality is currently unnaturally high as a consequence of
mortality associated with poorly designed electric power lines
and other perilous infrastructures (e.g. Ferrer and Hiraldo,
1992; Real and Manosa, 1997; Ferrer and Janss, 1999; Ontiveros
et al., 2004; Lopez-Lopez et al., 2007a, b), and thus, it can be
reduced if proper actions are implemented, (b) it is the param-
eter that the population growth rate seems to be most sensi-
tive to when connectivity among local populations is taken
into account, and (c) it is currently further away from its po-
tential maximum than the other parameters analysed. Under
a metapopulation point of view, where the different sub-pop-
ulations are linked through juvenile dispersal (Mufioz et al.,
2005), pre-adult mortality plays a key role to ensure the con-
servation of the species.

Yet, successful conservation action requires mixed strate-
gies aimed at simultaneously improving several parameters
(e.g., Hiraldo et al., 1996; Ferrer et al., 2004; Penteriani et al,,
2005, 2006), and therefore actions focused on both adults
and pre-adults, are needed for the protection of Bonelli’s ea-
gles in Spain (Ontiveros et al., 2004). Nevertheless, actions
aimed at minimizing pre-adult mortality (e.g., power line
and pole correction) have the advantage over actions aimed
at decreasing adult mortality (e.g., reducing direct persecu-
tion) that the former could be focused in specific areas of
the country (e.g., the temporary settlements used by juve-
niles), whereas the latter should be focused over a large
extension of the country (i.e., the extensive breeding areas).
Temporary settlements are mostly characterized by the abun-
dance of prey and a low density of adults, and often overlap
with important hunting zones and areas with complex pat-
terns of natural vegetation and agricultural lands. In these
areas the development of irrigation systems is accompanied
by the development of the electricity network, and hence,
an increase in the risk of electrocution (Real et al., 2001;
Ontiveros et al., 2004). There is already vast information on
how to minimize the impact of power lines on raptor popula-
tions, including procedures to modify pole design and proce-
dures to identify dangerous lines and poles (Negro and Ferrer,
1995; Ferrer and Janss, 1999; Janss and Ferrer, 1999, 2001; Janss
et al., 1999). Thus, locating and protecting the areas used by
juveniles Bonelli’'s eagles as temporary settlements, and putt-
ing forward conservation measures aimed at diminishing

electrocution and shooting there, are likely to result in sensi-
ble improvements on the species’ status in Spain.

5. Uncited reference

Wisdom et al. (2000).

Acknowledgements

Thanks are due to C. Garcia-Ripollés and L. Cadahia who
made valuable comments on early drafts of the manuscript.
J. Balbontin and M. Ferrer provided valuable data on the pop-
ulation of Cédiz and made many appreciated suggestions that
contributed to improve the manuscript. The paper complies
with the current laws of Spain. P. Lépez-Lépez is supported
by FPU grant of the Spanish Ministerio de Educacién y Ciencia
(reference AP2005-0874). The first two authors contributed
equally to this paper. This paper is a part of P. Lopez-Lopez
Ph.D thesis.

REFERENCES

Arroyo, B., Ferreiro, E., Garza, V., 1995. El Aguila Perdicera
(Hieraaetus fasciatus) en Espafia: Censo, distribucién,
reproduccién y conservacién, ICONA, Serie Técnica, Madrid.

Balbontin, J., 2005. Identifying suitable habitat for dispersal in
Bonelli’s eagle: an important issue in halting its decline in
Europe. Biological Conservation 126, 74-83.

Balbontin, J., Ferrer, M., 2005. Condition of large brood in Bonelli’s
Eagle Hieraaetus fasciatus. Bird Study 52, 37-41.

Balbontin, J., Penteriani, V., Ferrer, M., 2003. Variations in the age
of mates as an early warning signal of changes in population
trends? The case of Bonelli’s eagle in Andalusia. Biological
Conservation 109, 417-423.

Baxter, PWJ., Mccarthy, M.A., Possingham, H.P,, Menkhorst, PW.,
Mclean, N., 2006. Accounting for management costs in
sensitivity analyses of matrix population models.
Conservation Biology 20, 893-905.

Cadabhia, L., 2007. Dispersién natal y estructura de la poblacién de
aguila-azor perdicera Hieraaetus fasciatus en la Peninsula
Ibérica. Ph.D. Thesis. University of Alicante, Spain.

Cadabhia, L., Urios, V., Negro, J.J., 2005. Survival and movements of
satellite-tracked Bonelli’s Eagles Hieraaetus fasciatus during
their first winter. Ibis 147, 415-419.

Cadabhia, L., Urios, V., Negro, J.J., 2007. Bonelli’s Eagle Hieraaetus
fasciatus juvenile dispersal: hourly and daily movements
tracked by GPS. Bird Study 54, 271-274.

Cadabhia, L., Lépez-Lépez, P., Urios, V., Negro, J.J., Soutullo, A., in
press. Aguila perdicera: hacia una estrategia de conservacién
global. Quercus 264, pp. XX-XX.

Carrete, M., Sdnchez-Zapata, J.A., Martinez, J.E., Calvo, J.F., 2002.
Predicting the implications of conservation management: a
territorial occupancy model of Bonelli’s eagle in Murcia, Spain.
Oryx 36, 349-356.

Caswell, H., 2000. Prospective and retrospective perturbation
analyses: their roles in conservation biology. Ecology 81, 619-
627.

Caswell, H., 2001. Matrix Population Models: Construction,
Analysis and Interpretation, 2nd ed. Sinauer Associates,
Sunderland, Massachusetts, USA.

Cramp, S., Simmons, K.E.L., 1980. In: The birds of Western
Paleartic, vol. 2. Oxford University Press, United Kingdom.

doi:10.1016/j.biocon.2008.01.011

Please cite this article in press as: Soutullo, A. et al, Incorporating spatial structure and stochasticity ..., Biol. Conserv. (2008),

445
446

450
451
452
453
454
455
456
457
458
459

460

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500



501

502
503
504
505
506
507
508
509
510
511

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

8 BIOLOGICAL CONSERVATION XXX (2008) XXX-XXX

Crouse, D.T., Crowder, L.B., Caswell, H., 1987. A stage-based
population-model for loggerhead sea-turtles and implications
for conservation. Ecology 68, 1412-1423.

de Kroon, H., van Groenendael, J., Ehrlen, J., 2000. Elasticities: a
review of methods and model limitations. Ecology 81, 607-618.

Del Moral, J., 2006. El aguila Perdicera en Espafia. Poblacién En
2005 y Método De Censo. SEO/BirdLife, Madrid, Spain.

Ehrlén, J., van Groenendael, J., de Kroon, H., 2001. Reliability of
Elasticity Analysis: Reply to Mills et al. Conservation Biology
15, 278-280.

Ferguson-Lees, J., Christie, D.A., 2001. Raptors: Birds of Prey of the
World. A and C Black Pub., Ltd., London, United Kingdom.

Ferrer, M., Calderdn, J., 1990. The Spanish imperial eagle C.L.
Brehm 1861 in Dofiana National Park (southwest Spain): a
study of population dynamics. Biological Conservation 51,
151-161.

Ferrer, M., Hiraldo, F., 1991. Evaluation of management techniques
for the Spanish Imperial Eagle. Wildlife Society Bulletin 19,
436-442.

Ferrer, M., Hiraldo, F.,, 1992. Man-induced sex-biased mortality in
the Spanish imperial eagle. Biological Conservation 60, 57-60.

Ferrer, M., Janss, G., 1999. Birds and Power Lines. Editorial
Quercus, Madrid, Spain. p. 290.

Ferrer, M., Otalora, F, Garcia-Ruiz, J.M., 2004. Density-dependent
age of first reproduction as a buffer mechanism affecting
persistence of small populations. Ecological Applications 14,
616-624.

Gil-Sanchez, JM., Moledn, M., Otero, M., Bautista, J., 2004. A nine-
year study of successful breeding in a Bonellis eagle
population in southeast Spain: a basis for conservation.
Biological Conservation 118, 685-694.

Hanski, 1., 1999. Metapopulation Ecology. Oxford Series in Ecology
and Evolution. Oxford University Press, Inc., New York, USA.

Heppell, S.S., Caswell, H., Crowder, L.B., 2000. Life histories and
elasticity patterns: perturbation analysis for species with
minimal demographic data. Ecology 81, 654-665.

Hiraldo, F, Negro, JJ., Dondzar, J.A., Gaona, P, 1996. A
demographic model for a population of the endangered Lesser
Kestrel in southern Spain. Journal of Applied Ecology 33, 1085-
1093.

Hitchcock, C.L., Gratto-Trevor, C., 1997. Diagnosing a shorebird
local population decline with a stage-structured population
model. Ecology 78, 522-534.

Janss, G.EE., Ferrer, M., 1999. Mitigation of raptor electrocution on
steel power poles. Wildlife Society Bulletin 27, 263-273.

Janss, G.EE., Ferrer, M., 2001. Avian electrocution mortality in
relation to pole design and adjacent habitat in Spain. Bird
Conservation International 11, 1-10.

Janss, G.EE., Lazo, A., Ferrer, M., 1999. Use of raptor models to
reduce avian collision with power lines. Journal of Raptor
Research 33, 154-159.

Lacy, R.C., 1993. VORTEX: a computer simulation model for
population viability analysis. Wildlife Research 20, 45-65.

Lacy, R.C., 2000. Structure of the VORTEX simulation model for
population viability analysis. Ecological Bulletins 48, 191-203.

Lacy, R.C., Borbat, M., Pollak, J.P., 2005. VORTEX: a stochastic
simulation of the extinction process. Version 9.50., Zoological
Society, Brookfield, IL, Chicago.

Lande, R., Engen, S., Seether, B., 2003. Stochastic population
dynamics in ecology and conservation. Oxford Series in
Ecology and Evolution. Oxford University Press, Inc., New
York, USA.

Lindenmayer, D.B., Burgman, M.A., Ackakaya, H.R,, Lacy, R.C.,
Possingham, H.P,, 1995. A review of the generic computer
programs ALEX, RAMAS/space and VORTEX for modelling the
viability of wildlife metapopulations. Ecological Modelling 82,
161-174.

Lopez-Lopez, P, Garcia-Ripollés, C., Soutullo, A., Cadahia, L.,
Urios, V., 2007a. Are important bird areas and special protected
areas enough for conservation? The case of Bonelli’s eagle in a
mediterranean area. Biodiversity and Conservation 16, 3755-
3780.

Lépez-Lopez, P., Garcia-Ripollés, C., Urios, V., 2007b. Population
size, breeding performance and territory quality of Bonelli’s
eagle (Hieraaetus fasciatus) in eastern Iberian Peninsula. Bird
Study 54, 335-342.

Miller, P.S., Lacy, R.C., 2005. VORTEX: a stochastic simulation of the
extinction process. Version 9.50, User’s Manual, Conservation
Breeding Specialist Group, Apple Valley, MN, USA.

Mills, L.S., Doak, D.F., Wisdom, M.J., 1999. Reliability of
conservation actions based on elasticity analysis of matrix
models. Conservation Biology 13, 815-829.

Mills, L.S., Doak, D.F.,, Wisdom, M.J., 2001. Elasticity analysis for
conservation decision making: reply to Ehrlén et al.
Conservation Biology 15, 281-283.

Mufioz, A.R., Real, R., Barbosa, A.M., Vargas, J.M., 2005. Modelling
the distribution of Bonelli’s eagle in Spain: implications for
conservation planning. Diversity and Distributions 11, 477-
486.

Negro, J.J., Ferrer, M., 1995. Mitigating measures to reduce
electrocution of birds in power lines: a comment on Bevanger’s
review. Ibis 137, 423-424.

Ontiveros, D., Real, J., Balbontin, J., Carrete, M.R., Ferreiro, E.,
Ferrer, M., Mafiosa, S., Pleguezuelos, ].M., Sdnchez-Zapata, J.A.,
2004. Conservation biology of the Bonelli’s Eagle in Spain:
research and management. Ardeola 51, 461-470.

Penteriani, V., Otalora, F., Sergio, F,, Ferrer, M., 2005.
Environmental stochasticity in dispersal areas can explain the
“mysterious” disappearance of breeding populations.
Proceeding of the Royal Society Series B 272, 1265-1269.

Penteriani, V., Otalora, F., Ferrer, M., 2006. Floater dynamics can
explain positive density-dependence patterns in animal
populations. The American Naturalist 168, 697-703.

Real, J., Mafiosa, S., 1997. Demography and conservation of
western European Bonelli’s Eagle (Hieraaetus fasciatus)
populations. Biological Conservation 79, 59-66.

Real, J., Grande, ].M., Manosa, S., Sanchez-Zapata, J.A., 2001.
Causes of death in different areas for Bonelli’s Eagle Hieraaetus
fasciatus in Spain. Bird Study 48, 221-228.

Real, J., 2004. Aguila—azor perdicera, Hieraaetus fasciatus. In:
Madroiio, A., Gonzélez, C., Atienza, J.C. (Eds.), Red Book of the
Birds of Spain. Direccién General para la Conservacién de la
Biodiversidad-SEO/BirdLife, Madrid, Spain, pp. 154-157.

Tilman, D., Kareiva, P., 1997. Spatial Ecology. The Role of Space in
Population Dynamics and Interspecific Interactions. Princeton
University Press, Princeton, USA.

Whitfield, D.P,, Fielding, A.H., McLeod, D.R.A., Haworth, P.F., 2004.
Modelling the effects of persecution on the population
dynamics of golden eagles in Scotland. Biological
Conservation 119, 319-333.

Wisdom, M.J., Mills, L.S., Doak, D.F.,, 2000. Life stage simulation
analysis: estimating vital-rate effects on population growth for
conservation. Ecology 81, 628-641.

Zar, J.H., 1984. Biostatistical Analysis. Prentice-Hall, USA.

doi:10.1016/j.biocon.2008.01.011

Please cite this article in press as: Soutullo, A. et al, Incorporating spatial structure and stochasticity ..., Biol. Conserv. (2008),

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

624
625



	Incorporating spatial structure and stochasticity in endangered Bonelli " s eagle " s population models: Implications for conservation and management
	Introduction
	Methods
	Results
	Discussion
	Uncited reference
	Acknowledgements
	References




