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KERNEL METHODS FOR ESTIMATING THE UTILIZATION
DISTRIBUTION IN HOME-RANGE STUDIES!

B. J. WORTON
Mathematical Institute, University of Kent, Canterbury, Kent CT2 7NF England

Abstract.

In this paper kernel methods for the nonparametric estimation of the uti-

lization distribution from a random sample of locational observations made on an animal
in its home range are described. They are of flexible form, thus can be used where simple
parametric models are found to be inappropriate or difficult to specify. Two examples are
given to illustrate the fixed and adaptive kernel approaches in data analysis and to compare
the methods. Various choices for the smoothing parameter used in kernel methods are
discussed. Since kernel methods give alternative approaches to the Anderson (1982) Fourier
transform method, some comparisons are made.

Keywords: bivariate density estimation; data analysis; home range; kernel estimate; nonparametric
estimation; probabilistic model; utilization distribution.

INTRODUCTION

Estimation of the utilization distribution (UD: the
name given to the distribution of an animal’s position
in the plane) is of great importance in home-range
studies. Roth parametric (Jennrich and Turner 1969,
Van Winkle 1975, Don and Rennolls 1983) and non-
parametric (Ford and Krumme 1979, Dixon and Chap-
man 1980, Anderson 1982) methods have been used
to estimate the UD. The purpose of this paper is to
illustrate how one might proceed with home-range data
analysis if simple parametric models are inappropriate
for the UD.

Many papers have been published on the subject of
home-range estimation and reviews are given in, for
example, Macdonald et al. (1980) and Worton (1987).
Although approaches such as polygon and grid cell
methods have been used for data analysis, here we
concentrate on probability density estimation ap-
proaches. That is, the home range of an animal is de-
scribed in terms of a probabilistic model. If an estimate
of home range is required from the estimated UD, the
area contained within the 100a% confidence region
may be used. Values of « = .5 and .95 are commonly
used, but there is possibly some advantage in using the
smaller value of « = .5 (see Anderson 1982). This paper
is not intended to review the home-range literature,
but it is useful to describe some approaches that have
been used to estimate the UD.

The first methods used to estimate UDs assumed
simple bivariate normal models (Calhoun and Casby
1958, Jennrich and Turner 1969). More recently Don
and Rennolls (1983) used a mixture of bivariate normal
distributions that allowed for the possibility of mul-
timodality. It is possible to think of other, more so-
phisticated, models that could be used to describe the
UD. However, it is worth keeping models as simple

' Manuscript received 25 January 1988; revised and ac-
cepted 25 May 1988.

as possible, but still having a reasonable fit for the data.
Because of the processes that give rise to home range
area usage, it is not difficult to imagine that UDs might
arise that would be difficult to model using standard
bivariate distributions (Dixon and Chapman 1980,
Anderson 1982). For this reason, when a simple para-
metric model is inappropriate or difficult to specify,
there is a need for nonparametric estimation ap-
proaches.

The harmonic mean method proposed by Dixon and
Chapman (1980) describes the intensity of use of the
home range at a point x by

n

1
HM(x) =~ % |x = x|,
=1

where x,, for i =1, ... n, are the observational data.
Unfortunately, since the method does not produce a
probability density, it has only a limited probabilistic
interpretation. The approach also has the disadvantage
of producing misleading results if an observation is
near x, the point of evaluation. Various modifications
to the method have been made to overcome these prob-
lems (Dixon and Chapman 1980, Spencer and Barrett
1984, Samuel et al. 1985).

Anderson (1982) discussed how bivariate histograms
may be used to estimate the UD. However, histogram
estimates are very subjective because one has to choose
(1) the origin, (2) the cell size, and (3) the orientation
of the axes. To avoid these problems and the inefficient
use of data, Anderson used the Fourier transform
method to estimate the UD (see Tarter and Kronmal
1970). Essentially, the method estimates the density
by a series of sines and cosines of different frequencies.
High-frequency terms in the series can be removed to
leave a “smoothed” density. Anderson modified the
original method of Tarter and Kronmal that tests if
terms in the series contribute significantly to avoid
unacceptable, jagged density estimates.

Two possible disadvantages with the Fourier trans-
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form method are that the density estimates can take
negative values, and estimation can only be made on
a specified finite region of the plane. Kernel methods,
as described below, are free of these problems and
provide alternative approaches. They are also concep-
tually easier to understand and explain. It is not sug-
gested that kernel methods are better than the Fourier
transform method, although there are reasons why bi-
ologists may prefer to use them in home-range data
analysis.

KERNEL METHODS

Like the Fourier transform method, kernel methods
free the UD estimate from parametric assumptions and
provide a means of smoothing locational data to make
more efficient use of them than a histogram. Kernel
methods have well-understood consistent statistical
properties (Rosenblatt 1956, Parzen 1962, Cacoullos
1966) and are widely used in both univariate and multi-
variate probability density estimation.

Fixed kernel method

Restricting ourselves to the bivariate case, suppose
that X, = [X,, X7 X, = [X,", X,®7, ..., X, =
[X, M, X,@] is arandom sample of » independent points
from an unknown utilization distribution with prob-
ability density function f{x), which is to be estimated,
then the bivariate kernel estimator of f{x) can be de-
fined as

“ 1 4 —
M”TWEKPhﬂ’

where the kernel K is a unimodal symmetrical bivariate
probability density function, and 4 is the smoothing
parameter that can be varied by the user (Silverman
1986). As an example, if the bivariate normal density
kernel is used, the kernel density estimator is

1 &1
nh* = 2«

mp(_(x - X)(x — X,)>'

filx) =

2h?

Alternatively, the Epanechnikov kernel defined as

_ J27r (1 — x'x) forx'x <1
Ki(x) |0 otherwise

may be used to obtain the kernel estimator. At this
stage it is worth describing an intuitive interpretation
of the kernel method.

The kernel estimator may be pictured as follows. A
scaled-down probability density function, namely the
kernel, is placed over each data point and the estimator
is constructed by adding the » components. Thus, where
there is a concentration of points the kernel estimate
has a higher density than where there are few points.
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Because each kernel is a density the resulting estimate
is a true probability density function itself.

The smoothing parameter controls the amount of
variation in each component of the estimate. Thus, if
a small value of 4 is used, the fine detail of the data
can be observed, while a larger value of 4 obscures all
but the most prominent features. The type of kernel
estimators considered so far are called fixed kernel es-
timators because the smoothing parameters are of fixed
value over the plane.

It is interesting to note that the harmonic mean
method can be interpreted as a kernel method with
kernel

K(x)=|x|".

However, since this type of kernel does not have the
properties of a probability density function and there
is no smoothing parameter used, the method does not
possess the desirable properties of the usual fixed kernel
method.

Adaptive kernel method

Sometimes a more sophisticated kernel approach
called the adaptive kernel method is needed. This
method varies the smoothing parameter so that areas
with a low concentration of points have higher / values
than areas with a high concentration of points, and are
thus smoothed more. Therefore, the adaptive method
is an improvement on the fixed kernel method, par-
ticularly in the tails of the density. The UD density
estimator is

- 1l & 1 - X
hw =~ 25 Ch'>

where the smoothing parameters /, are based on some
“pilot” estimate of the density. Silverman (1986:101)
suggested that the smoothing parameters may be taken
as h, = h\, where / is a global smoothing parameter
and the A, are local smoothing parameters given by

[fex)

A=
| ¢

}' fori=1,...n,
where

1 .
log g =~ > log f(X)

i=1

and f‘(X‘) > 0 is some pilot estimate of f{x) evaluated
at point X,. Adopting this approach there is only one
smoothing parameter, as with the fixed kernel method.
As an example, the pilot estimate f(x) may be taken
as a fixed kernel estimate. Breiman et al. (1977) con-
sidered another form of this type of estimator.

Theoretical optimum choice of
smoothing parameter

It is generally accepted in the kernel literature that
the choice of the kernel K is not as important as the
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Plots of (A) the DC data set and (B) the SIM data

choice of the smoothing parameter (Epanechnikov
1969). Thus, for a given kernel and sample size we
need to find the “best” value of 4. The criterion for
choosing a good value of 4 is often given in terms of
the global measure of error, namely the mean inte-
grated square error (MISE) defined as

AﬂSEM)=tijﬁ,ffy,

where E denotes the expectation with respect to the
random observations. For our bivariate case, the in-
tegration is over the plane. The best value of / is taken
as the value of 4 that minimizes MISE(h).

Unfortunately, from our practical interest in the
choice of 4, some theoretical calculations show that to
obtain the optimum smoothing parameter, using this
criterion, we need to know the UD density f(x). There-
fore, 4 cannot be obtained in this way in practice. Some
possible approaches for choosing 4 in data analysis are
discussed in the following section.

Choosing the smoothing parameter in practice

An ad hoc, but popular, method for choosing 4 is to
use the optimum 4 value obtained for some standard
distribution, such as the normal distribution. Using a
fixed normal kernel, it can be shown that for the bi-
variate normal distribution with variance—covariance

>

matrix <g , |, the optimum #4 for large sample size

0o
nis

—_ 1
Py = an e,

Thus, an obvious estimate of 4,,, is

};‘,m =dn o,

where ¢ = {%2 [62.) + 6w2]l", and 6%, and 6%
are the estimated variances of the x" and x** data. If
these variances differ greatly it may be worth rescaling
the data so that the variances are equal before applying
a kernel method. Bowman (1985) has shown that this
estimation method often produces better results than
more sophisticated methods in univariate estimation.
However, caution should be exercised in using this
choice of A, especially if the UD is suspected to be
multimodal.
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Of the objective methods for estimating 4 described
in Silverman (1986), the approach of least-squares cross-
validation appears to provide a good method of esti-
mation. If a standard bivariate normal density fixed
kernel K is used, the value of / is chosen to minimize

M) = n2h 2 E K*<—X’ ; XJ)

=1 j=1
+ 2n'h2K(0),
where K* = K® — 2K, and K@ is the bivariate normal

20

. Th
0 2/ The
intuitive reason this method provides a good estimate
is that

density with variance—covariance matrix

ﬂmm+fﬂz5fm—ﬁ%

Thus, by minimizing M(#) we would hope to minimize
MISE(h). Least-squares cross-validation can also be
used to find the global smoothing parameter in the
adaptive kernel method.

HoOME-RANGE DATA ANALYSES

Two data sets are analyzed in this section to illustrate
the practical use of kernel methods in home-range data
analysis. The first data set is taken from Dixon and
Chapman (1980:Fig. 3) with sample size n = 41, and
the second is an artificial data set of sample size n =
100 from a bivariate distribution with nonconvex
probability density function contours; these data sets
are denoted by DC data and SIM data respectively.
The bivariate distribution from which the artificial data
were simulated has the probability density function

b2
Sx p) ——lzwlexp[ BT 2]
> (y - 2.5y
N exp[_% _ U_IS_)}]

This is a mixture of normal densities.
By simply inspecting scatter plots of the two data
sets (Fig. 1) it may not be clear what type of parametric

20 40 60 80 100

F1G. 2. Fixed kernel density estimates of the UD densities
with the ad hoc choice of smoothing parameters for (A) the
DC data set (4 = 10.) and (B) the SIM data set (h = 1.).
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F1G. 3. Fixed kernel density estimates of the UD densities
with the least-squares cross-validation choice of smoothing
parameters for (A) the DC data set (4 = 4.7) and (B) the SIM
data set (h = 0.77).

model would be appropriate. Clearly, the bivariate nor-
mal parametric model, which has been widely used in
past home-range analyses, is not a plausible model for
either data set. Since both DC and SIM types of data
appear to occur frequently, their analyses are of par-
ticular interest.

The standard normal kernel is used below in both
fixed and adaptive kernel estimates.

DC data analysis

First, consider fixed kernel estimation of the UD
density. As an exploratory exercise, the UD was esti-
mated for a range of 4 values by the fixed kernel meth-
od. This gave a feel for the nature of the data and
showed the two-cluster character of the data more
clearly than in the scatter plot. Using the ad hoc esti-
mate of # we find that # = 10 and produces a UD
density estimate illustrated in Fig. 2A. Using the meth-
od of least-squares cross-validation, the score function
M(h) gave a minimum value at 2 = 4.7, and Fig. 3A
is an appropriate UD density estimate.

Comparing the two results we see that the least-
squares cross-validation choice of 4 gives a clearer pic-
ture of the underlying UD density, while the ad hoc
choice of 4 has over-smoothed the data. However, both
show that the UD is clearly not unimodal. The least-
squares cross-validation choice could also be suggest-
ing a third important mode above the left cluster.

The bump in the fixed kernel density estimate in Fig.
3A at the bottom right of the plot is due to a point in
an area with a low concentration of points. To remove
this effect, an adaptive kernel estimate was constructed,
with a least-squares cross-validation choice of 4 = 5.7.
This is illustrated in Fig. 4A, and the pilot estimate is
taken as the fixed kernel estimate with 4 = 4.7. The
adaptive estimate shows very clearly the bimodal na-
ture of the data, and gives a better picture of the tails
of the UD than the fixed kernel estimates.

Very similar estimates indeed were obtained when
the above analyses were carried out using the Epanech-
nikov kernel. This supports the theoretical findings that
the precise form of the kernel used is unimportant.
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SIM data analysis

For the fixed kernel method, the ad hoc choice of /
is 1, and the least-squares cross-validation choice of 4
is 0.77. The respective UD kernel density estimates
are shown in Figs. 2B and 3B. As with the DC data,
the ad hoc choice produces an over-smoothed estimate
compared with the least-squares cross-validation
choice.

The adaptive kernel estimate based on a least-squares
cross-validation choice of 4 = 0.79 produces the esti-
mate shown in Fig. 4B. Comparing Figs. 3B and 4B
we see that the latter estimate gives a more satisfactory
representation of the tails of the UD density.

Although the above three kernel estimates all show
the important nonconvex feature of the UD density,
which is illustrated for the SIM data in Fig. 5, the
adaptive kernel estimate gives the most accurate pic-
ture.

DiscussioN AND CONCLUSIONS

The adaptive kernel estimate with a least-squares
cross-validation choice of 4 produced the best results
for both DC and SIM data sets, but the fixed kernel
method with an ad hoc choice of 4 also produced es-
timates of practical value. Generally the kernel method
and choice of smoothing parameter method adopted
in home-range data analysis will depend on the in-
tended use of the UD density estimate. If accuracy is
not crucial, the fixed kernel method with ad hoc choice
of 4 may provide all the information one needs about
the UD, for example, the location of the modes. How-
ever, if one is investigating UDs, say, for static attrac-
tion/repulsion, then accuracy in the tails of the density
estimates is important, and the adaptive method with
least-squares cross-validation choice of 4 should be
used.

Computationally, fixed kernel estimates are the same
to evaluate as the harmonic mean method. The adap-
tive method needs more calculation since the pilot es-
timate on which the local smoothing parameters are
based has to be obtained first. Therefore, as one would

100 — 8y
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80| 6
4
60
2
40
; 0
20| -2
05— 0 B I

0O 20 40 60 80 100 - 4 6 8

FiG. 4. Adaptive kernel density estimates of the UD den-
sities with the least-squares cross-validation choice of
smoothing parameters for (A) the DC data set (h = 5.7) and
(B) the SIM data set (4 = 0.79). The pilot estimates were taken
as the estimates shown in Fig. 3.
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Fi1G. 5. Contours of the true probability density function
from which SIM data were simulated.

expect, more computation is needed for the better ker-
nel estimate.

The above analyses show that kernel methods are
very useful for estimating the UD density because there
are no constraints placed on the form of the UD. How-
ever, the nonparametric kernel approaches should not
be used to the exclusion of parametric approaches, and
if a suitable parametric model is available there is no
reason why it should not be used. At the exploratory
stage of data analysis, a kernel estimate with a subjec-
tively chosen smoothing parameter may help to suggest
a suitable parametric model for the UD. Thus, para-
metric and nonparametric methods can be used to in-
vestigate home-range data, but nonparametric ap-
proaches have the great advantage of flexibility. Often,
only a kernel estimate of the UD density will be needed
to make all the useful interpretations of the animal’s
movements from the home-range data. Therefore, un-
less there is a clearly appropriate parametric model,
such as the bivariate normal model, an analysis of the
data by kernel methods alone will usually suffice.

The assumption of independence made throughout
this paper may be tested for using the Swihart and Slade
(1985) test. It is suggested that kernel methods could
also be applied to data for exploratory purposes in a
similar way to the grid cell methods discussed by Voigt
and Tinline (1980). This would then avoid problems
associated with placing a grid on the study site.

Although kernel methods have been used generally
for nonparametric density estimation, in the context
of home-range data analysis their use has, unfortu-
nately, been neglected. A possible reason for this is that
much of the kernel methods’ literature deals with the-
oretical properties and is quite mathematical. It is hoped
that this paper has illustrated the practical importance
and potential of kernel methods in home-range data
analysis and will encourage their use.
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