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Species distribution models in climate change scenarios are still not
useful for informing policy planning: an uncertainty assessment using
fuzzy logic

Raimundo Real, Ana Luz Marquez, Jesis Olivero and Alba Estrada

R. Real (rrgimenez@uma.es), A. Luz Mdrquez and J. Olivero, Biogeography, Diversity, and Conservation Research Team, Dept of Animal
Biology, Fac. of Sciences, Univ. of Malaga, ES-29071, Malaga, Spain. — A. Estrada, Inst. de Investigacion en Recursos Cinegéticos — IREC
(CSIC-UCLM-JCCM), Ronda de Toledo sin, ES-13071, Ciudad Real, Spain.

We compared the effect of general circulation models and greenhouse gas emission scenarios on the uncertainty associated
with models predicting changes in areas favourable to animal species. Given that mountain species are particularly at risk
due to climate warming, we selected one amphibian (Baetic midwife toad), one reptile (Lataste’s viper), one bird
(Bonelli’s eagle), and one mammal (Iberian wild goat) present in Spanish mountains to model their distributional
response to climate change during this century. Climate forecasts for the whole century were provided by the Agencia
Estatal de Meteorologia (AEMET; National Meteorological Agency) of Spain, which adapted the general circulation
models CGCM2 and ECHAM4 and produced expected temperature and precipitation values for Spain according to the
A2 and B2 emission scenarios. We constructed separate models of the species response to spatial, topographic, human,
and climate variables using current values of the corresponding variables. We predicted future areas favourable to the
species by replacing the current climate values with those expected according to each climate change scenario, while
keeping spatial, topographic and human variables constant. Fuzzy logic was used to compute the coincidence between
predictions for different emission scenarios in the same global circulation model, and the consistency between predictions
for the same emission scenario applying different general circulation models. In general, coincidences were higher than
consistencies and, thus, discrepancies between predictions were more attributable to uncertainty in global circulation
models, i.e. our insufficient knowledge concerning the effect of the oceans and atmosphere on climate, than to the
putative effect of different emission scenarios on future climates. Our conclusion is that species distribution models in
climate warming scenarios are still not useful for informing emission policy planning, although they have great potential
as tools once consistencies become higher than coincidences.
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Species distribution models are usually employed to assess
the potential changes in the distribution of species in
response to different factors (Barbosa et al. 2003, Mufioz
et al. 2005, Munoz and Real 2006, Farfin et al. 2008,
Luoto and Heikkinen 2008). Several studies have focused
on modelling species distribution shifts in response to
climate change (Beaumont et al. 2005, Levinsky et al. 2007,
Foody 2008) to monitor the effects of the increase in global
average temperature recorded over the last century and
predicted for the present century (IPCC 2007). One of the
main aims of modelling biogeographical responses to
climate change is to inform policy planning by providing
a kind of virtual feedback on greenhouse gas emissions. This
kind of modelling uses future climates, which are predicted
according to the combination of Atmosphere-Ocean Gen-
eral Circulation Models (AOGCMs) and special reports on
emission scenarios (SRESs).

This procedure incorporates several sources of uncer-
tainty, some of them related to the existence of different
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AOGCMs (over 20 models available), characterized by
different hypotheses on the effect of the oceans and the
atmosphere on climate, and SRESs (40 scenarios of
future emissions developed by the Intergovernmental
Panel on Climate Change), characterized by different
storylines of future socio-economic and technological
development (Beaumont et al. 2008). The use of
different AOGCMs may produce conflicting projected
distributions of a species (Xu and Yan 2001). Never-
theless, species distribution models in climate-warming
scenarios (which include the effects of AOGCMs and
SRESs) will be useful for informing emission policy
planning if differences in predicted effects due to
differences in SRES are significantly higher than those
due to differences in AOGCMs. Fuzzy set theory may be
applied to the analysis of species distribution modelling
(Robertson et al. 2004, Gevrey et al. 2006, van der
Broekhoven et al. 2006, Estrada et al. 2008, Real et al.
2009), and may be used to assess the models’ projections



to the future and the different kinds of uncertainty
associated with them.

The Mediterranean region is considered to be highly
responsive to climate change, because of its geographical
situation between temperate central Europe and arid
northern Africa (Sinchez et al. 2004, Giorgi and Lionello
2008). Mountain ecosystems seem to be particularly
sensitive to global warming and are of particular concern
to policy planners (Foster 2001, Nogués-Bravo et al. 2007,
Trivedi et al. 2008), especially in the Mediterranean region
(Nogués-Bravo et al. 2008). Mountain species ranges might
shift more rapidly in response to climate change, as
mountains often retain more natural habitats than lowlands
do, and because in mountains the microclimate varies with
elevation and the species may track climate change over
shorter distances (Wilson et al. 2007). Several mountain
species have indeed shifted to higher altitudes across
European mountains (Grabherr 1994, Klanderud and Birks
2003, Penuelas and Boada 2003, Wilson et al. 2005, Pauli
et al. 2007, Wilson et al. 2007). Mountain species are,
therefore, especially suited to evaluating the potential effects
of future climate change on distributions.

We used fuzzy logic to compare the effect of AOGCMs
and SRESs on the uncertainty associated with models
predicting changes in areas favourable to four mountain
species in mainland Spain during the 21st century.

Methods
Species and study area

We selected four mountain species in mainland Spain:
Baetic midwife toad Alytes dickhilleni, Lataste’s viper Vipera
latasti, Bonelli’s eagle Aquila fasciata, and Iberian wild goat
Capra pyrenaica to model their distributional responses to
climate change during this century. Distribution data were
extracted from Marti and del Moral (2003), Pleguezuelos
et al. (2004), and Palomo et al. (2007) and are taken to
represent the species distributions in 1990. The study area
was located in the Mediterranean region, a transition zone
between the temperate climate of central Europe and the
arid climate of northern Africa. As small changes in the
processes that control those climates can lead to important
changes in the Mediterranean climate, this area is important
to analyse the effect of future climate changes on biodi-
versity (Glorgi and Lionello 2008, Nogués-Bravo et al.
2008).

Climatic data

The climatic variables were the result of regionalizing the
general circulation models, which combined AOGCMs and
SRESs, to Spain. This regionalization was done by the
Agencia Estatal de Meteorologia (AEMET; National
Meteorological Agency <www.aemet.es/es/elclima/cambio_
climat/escenarios>) of Spain (Brunet et al. 2007), which
used two AOGCMs: CGCM2 from the Canadian Climate
Centre for Modelling and Analysis, and ECHAM4 from
the Max Planck Inst. fiir Meteorologie; and two SRESs: A2
and B2 (Nakicenovic et al. 2000). These SRESs represent
an intermediate position regarding the wide range of

projected shifts in temperature and precipitation (Brunet
et al. 2007).

Distribution modelling

We modelled the distribution of each species in 10 x 10 km
UTM cells with variables related to four explanatory factors
taken separately: spatial situation, topography, human
activity, and climate (Table 1). For climate we used the
values for the period 1961-1990. Real et al. (2008b)
showed that while in the north of Europe energy availability
is the main factor limiting species distribution, in the south
their distribution seems to be more affected by climatic
stress due to an excess of environmental energy. We used
maximum temperatures because this variable is more
representative of this type of climatic stress; in the Iberian
Peninsula an increase in maximum temperatures may be
potentially more detrimental to species distributions than
an increase in minimum temperatures. Non-climatic factors
such as topography, human activity, history and population
dynamics may have an effect on species distributions (Real
et al. 2008a, 2009). As the species may show differential
responses to these factors (De Frene et al. 2009), their
relative importance should be assessed together with climate
before projecting species distribution models to the future.
The inclusion of spatial variables in a model can reveal a
geographical trend in distribution that could be associated
with historical events or with the species population
dynamics (Legendre 1993, Real et al. 2003). On the other
hand, latitude and longitude also affect the climatic
variables (Mérquez et al. 2004). Consequently, the true

Table 1. Explanatory factors and associated variables used to model
the species distributions.

Factors Code Variables

Spatial situation La Latitude (°N)™
Lo Longitude ey
Topography A Mean altitude (m
S Slope (°) (calculated from altitude)
SE Southward exposure degree'®
WE Westward exposure degree
Human activity DHi  Distance to the nearest highway (km
U100 Distance to the nearest urban centre
with >100 000 inhabitants (km)™
U500 Distance to the nearest urban centre
with >500 000 inhabitants (km)™"
HPd  Human population density in 2000
(number of inhabitants km ~2)®

Annual precipitation (mm)®
)

)(2)

1
)()

Climatic PAn
PSp Spring precipitation (mm
PSu Summer precipitation (mm)
PAu Autumn precipitation (mm)(5)
PWi  Winter precipitation (mm)"’
TAn Annual maximum temperature

(5)

(5)

Tla January maximum temperature(5)
TJu July maximum temperature®®
TSp Spring maximum temperature'®
TSu Summer maximum temperature(S)
TAu  Autumn maximum temperature®
TWi  Winter maximum temperature®

Sources: "I.G.N. (1999); ®US Geological Survey (1996); ®Shuttle
Radar Topography Mission (SRTM), Farr and Kobrick (2000);
“ORNL (2001); “®Agencia Estatal de Meteorologia of Spain
(AEMET), Ministerio de Medio Ambiente <www.aemet.es/es/elcli
ma/cambio_climat/escenarios>.
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effect of climate should be assessed in the context of the
spatial influences on the species distribution and on climate.
As for the human variables, major urban centres and
population density, although referring to 1999 and 2000,
respectively, do not differ greatly from the situation in
1990, whereas the highways built after 1990 were already
major roads in this year. Therefore, all these variables are
representative of the general pattern in effect in 1990.

For each species and factor (spatial situation, topogra-
phy, human activity, and climate) we performed logistic
regression of presence/absence with each variable related to
the factor separately. To control for the increase in type
1 errors due to multiple tests (Benjamini and Hochberg
1995, Garcia 2003), we controlled the false discovery rate
(FDR) using the procedure proposed by Benjamini and
Hochberg (1995), only accepting the variables that were
significant under an FDR of ¢ <0.05. We then performed
forward-backward stepwise logistic regression of presence/
absence data on each subset of significant predictor vari-
ables related to the factor. In this way we obtained for
each species four multivariate models, one for each factor
considered. These factor models show the response of
the species to spatial, topographic, human, and climatic
variables, separately.

We obtained a combined model performing forward-
backward stepwise selection of the variables that were
involved in any factor model. We then applied the
favourability function (Real et al. 2006), which allows
direct comparison of favourability values for species differ-
ing in their prevalence. In biological terms, this function has
proven to be able to reflect species abundance (Real et al.
2009) and performs correctly when transferring models
between different geographical areas (Barbosa et al. 2009).
We assessed the discrimination power of these models by
calculating Cohen’s kappa, sensitivity, specificity, and their
Correct Classification Rate (CCR), using the favourability
value of F=0.5 as classification threshold, and the Area
Under the Curve (AUC) of the Receiver Operating
Characteristic, which is independent of any favourability
threshold (Hosmer and Lemeshow 2000). Lobo et al.
(2008) recommended not using AUC as a comparative
measure of accuracy between model results when the
occupancy of the species in the territory differ, which is
the case here. We used AUC because it provides a measure
of the degree to which a species is restricted to a part of the
variation range of the modelled predictors, which is valuable
information in models intended to predict the response of
the species to changes in these predictors. The goodness-of-
fit of the models was assessed using the Hosmer and
Lemeshow test (Hosmer and Lemeshow 2000).

Models of this kind are inductively obtained from
current distribution data following certain induction rules
that guarantee agreement with them and, thus, do not
require validation with the training data. Models should be
validated according to, and specifically for, the specific
purpose they are built for. Although true validation of
models built to be transferred to the future is not possible at
present (Arajo et al. 2005), we determined whether the
models were at least spatially transferable within the study
area, by assessing if, after recalibrating them using a training
dataset, they perform similarly well in a pseudovalidation
dataset. We subsequently divided our whole dataset in a
randomly distributed recalibration set and a remaining
pseudovalidation set. The proportion of the whole dataset
used to constitute the recalibration set was determined by
the expression: [1 + (p — 1)'2171, where p is the number
of predictor variables in each distribution model (Fielding
and Bell 1997). In each model we assessed the agreement
between the results of the recalibration and pseudovalida-
tion by comparing their corresponding Cohen’s kappa,
sensitivity, specificity, CCR, and AUC, taking into account
that unsatisfactory coherence between recalibration and
pseudovalidation results does not imply that the recalibrated
model is wrong (Aradgjo et al. 2005), and even less that the
whole model is wrong. We projected to the future the
models based on the whole datasets, as they usually perform
better than those based on a subset (Fielding and Bell 1997,
Aratjo et al. 2005).

Future projection assessment using fuzzy set theory

Areas favourable to each species were projected to the future
by replacing the current (1961-1990) climatic values in the
favourability models with those expected according to each
AOGCM and SRES for the following time periods (2011—
2040, 2041-2070, 2071-2100). Values of the spatial,
topographic and human variables were not modified.

The process of environmental modelling can be under-
stood as the identification of the fuzzy set of areas
favourable to each species (Estrada et al. 2008). In the
favourability models, the favourability values represent the
degrees of membership of each area to the fuzzy set of areas
favourable to the species. We used various fuzzy logic
operations (Kuncheva 2001) to calculate, for each future
projection, several features of the predicted impact of
climate change on the species favourability, namely the
favourability overlap (O), the favourability maintenance
(M), the predicted shift in favourability (S), and the
increment in favourability (I) with respect to the 1961—
1990 period:

Table 2. Variables included in the favourability models for each species and combination of AOGCM and SRES. Variables codes as in

Table 1.
A. dickhilleni V. latasti A. fasciata C. pyrenaica
CGCM2-A2 Lo, La, A, S, PAn, Lo, La, A, U100, U500, Lo, A, S, PSu, Tju Lo, A, S, Dhi, U100,
PSu, TSp, Tau PSp, Tla, TWi PSp, PSu, PAu, Twi
CGCM2-B2 Lo, La, A, S, PAn, A, Dhi, U100, U500, A, S, PAn, Tlu Lo, A, S, Dhi, U100,
PSu, TSp, TAu PSp, TJa, TWi PSp, PSu, PAu, Twi
ECHAM4-A2/B2 Lo, La, A, S, U500, Lo, La, A, PAn, PWi Lo, A, S, PSu, Ty, Lo, La, A, S, Dhi, PAn,
PAn, PSp TSu, TAu PAu, TJa
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Table 3. Values obtained for different discrimination assessment measures of the favourability models obtained for the period 1961-1990.
Cohen’s kappa, sensitivity, specificity and Correct Classification Rate (CCR) have been calculated using the favourability value of F=0.5 as a
classification threshold. AUC: Area Under the Curve of the Receiver Operating Characteristic. Goodness-of-fit was assessed with the Hosmer
and Lemeshow test (H-L). * =p <0.01, n.s. =p >0.05. cF,, is the cardinality of the fuzzy set of favourable areas modelled for each species and

referring to the 1961-1990 period. Pre: prevalence.

Pre ck, Kappa  Sensitivity Specificity CCR AUC H-L
A. dickhilleni CGCM2 A2 480.61 0.43 0.971 0.928 0.929  0.986 1.696 n.s.
0.031 B2 480.45 0.429 0.971 0.927 0.928 0.986 1.65 n.s.
ECHAM4 A2/B2 455.09 0.456 0.978 0.934 0.935 0.987 0.586 n.s.
V. latasti CGCM2 A2 2235.89 0.234 0.643 0.689 0.681 0.737 12.59 n.s.
0.179 B2 2234.29 0.211 0.618 0.682 0.67 0.731 33.66*
ECHAM4 A2/B2 2116.79 0.276 0.719 0.683 0.689 0.768 16.29 n.s.
A. fasciata CGCM2 A2 1930.27 0.422 0.808 0.775 0.781 0.853 16.20 n.s.
0.164 B2 1935.98 0.414 0.803 0.772 0.777  0.847 8.06 n.s.
ECHAMA4 A2/B2 1912.35 0.406 0.799 0.768 0.773  0.861 11.12 n.s.
C. pyrenaica CGCM2 A2 1505.59 0.487 0.875 0.818 0.826  0.916 10.66 n.s.
0.138 B2 1507.66 0.489 0.878 0.818 0.826 0.916 9.79 n.s.
ECHAM4 A2/B2 1488.95 0.498 0.889 0.82 0.83 0.92 16.50 n.s.
c(i}ﬂFp) c(Ff ﬂ[;) in favourable areas, whereas negative values of / mean
- c(FUFE) - c(F) a net loss of areas favourable to the species (L =Min[0, 7]).
M5 ’ These features of the predicted impact of climate change
¢ :Min[c(FP) — co(F(\F,), c(F) — e(F;N\F)] on species favourability would be informative for policy

(F)

;) — F)
(£,

where, «(X) is the cardinality of the X fuzzy set, that is, the
sum of all cells’ degrees of membership in the fuzzy set X. Fy
is the fuzzy set of future areas favourable to the species, and
the degree of membership of each cell to Fyis defined by the
future favourability value for the species in the cell. F, is
the fuzzy set of present areas favourable to the species, and
the degree of membership of each cell to 7, is defined by the
present favourability value for the species in the cell. Fx(F,
is the intersection between future and present favourabil-
ities, and the degree of membership of each cell to F(F, is
defined by the minimum of the two favourability values for
the species in the cell. F¢(JF, is the union between future
and present favourabilities, and the degree of membership
of each cell to F¢(JF, is defined by the maximum of the two
favourability values for the species in the cell.

Positive values of increment (/) indicate the expansion
in favourability for the species (£ =Max[0, /]), thatis, a gain

planning if the coincidence between predictions for different
SRESs using the same AOGCM is lower than the consistency
between predictions for the same SRES applying different
AOGCM:s. Coincidence is here defined as the concurrence
between predictions according to two SRESs for a given
AOGCM and time period. These are computed as follows:

c(Fyp (V)
c(FpUFg,)
where, Fy, is the predicted future favourability according to
the AOGCM and the scenario A2, and Fp, is the predicted
future favourability according to the AOGCM and the
scenario B2.

Consistence is defined here as the agreement between
predictions for a given SRES applying different AOGCMs,

and is computed as follows:
c(Fo(N\Fy)
o(Fe UFx)

where, F( is the predicted future favourability according to
the circulation model CGCM2, and Fy is the predicted

Coincidence =

Consistence =

Table 4. Values obtained for Cohen’s kappa (K), Correct Classification Rate (CCR) and Area Under the Curve (AUC) of the Receiver Operating
Characteristic for each model on the recalibration set (rc) and on the pseudovalidation set (va). SE: standard error of Kappa.

Kva SE CCRc CCRy, AUC,c AUC,,

Kre SE
CGCM2 A2 0.423 0.051
A. dickhilleni B2 0.422 0.051
ECHAMA4 A2/B2 0.453 0.052
CGCM2 A2 0.241 0.021
V. latasti B2 0.227 0.021
ECHAM4 A2/B2 0.275 0.020
CGCM2 A2 0.423 0.024
A. fasciata B2 0.467 0.024
ECHAMA4 A2/B2 0.509 0.024
CGCM2 A2 0.477 0.024
C. pyrenaica B2 0.476 0.024

ECHAMA4 A2/B2 0.371 0.034

0.457 0.063 0.933 0.920 0.987 0.982
0.454 0.062 0.933 0.919 0.987 0.982
0.469 0.063 0.939 0.923 0.988 0.982

0.204 0.033 0.689 0.665 0.746 0.710
0.196 0.032 0.681 0.655 0.739 0.706
0.261 0.032 0.687 0.681 0.775 0.749

0.346 0.034 0.786 0.758 0.862 0.836
0.365 0.034 0.808 0.763 0.853 0.835
0.371 0.033 0.822 0.762 0.872 0.839

0.488 0.041 0.822 0.815 0.914 0.922
0.490 0.035 0.821 0.816 0.914 0.921
0.421 0.048 0.873 0.868 0.916 0.929
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future favourability according to the circulation model
ECHAM4.

Mean coincidences and consistencies were compared
using ANOVA after controlling for the normality of their
distributions using the Kolmogorov-Smirnov test.

Results

Scenarios A2 and B2 applied to the circulation model
ECHAM4 produced the same values for the period 1961—
1990, both for precipitation and temperature, which is why
there is only one favourability model for this AOGCM in
the initial period (Table 2 and 3).

The recalibrated models’ performances were similar in the
recalibration and the pseudovalidation datasets (Table 4).
The Cohen’s kappa and AUC values for the favourability
models based on the whole dataset were intermediate bet-
ween the corresponding values obtained on the recalibration
and pseudovalidation datasets (Table 3 and 4).

For A. dickhilleni and V. latasti, the predicted main-
tenance rate of the favourability was, in most cases,
medium-high (>0.70) and with slight shifts of the
favourable areas (the maximum shift rate being 0.145)
(Table 5, Fig. 1 and 2). However, for these species a clear
loss of favourable areas was sometimes predicted, reaching
net favourability loss values >0.25. For A. dickhilleni a net
expansion was predicted for the beginning and middle of

Table 5. Values of the rates of overlap (O), maintenance (M), shifting (S), increment (/), expansion (E) and net loss (L) of favourability
predicted for each future projection with respect to the 1961-1990 period. cF¢is the cardinality of the fuzzy set of areas favourable predicted
for the respective future period; c(F(\Fp) is the cardinality of the intersection between future and present favourability; and c(F¢(JF) is the

cardinality of the union between future and present favourability.

Species CCGM-SRES Period (@] M S / E L cFy
A. dickhilleni CGCM2-A2 20112040 0.807 0.993 0.007 0.224 0.224 0 588.19
2041-2070 0.655 0.706 0.079 —0.215 0 0.215 377.10
20712100 0.223 0.225 0.008 —0.768 0 0.768 111.81
CGCM2-B2 20112040 0.736 0.976 0.024 0.302 0.302 0 625.66
20412070 0.777 0.904 0.096 0.067 0.067 0 512.71
20712100 0.517 0.522 0.010 —0.468 0 0.468 255.57
ECHAMA4-A2 20112040 0.622 0.987 0.013 0.573 0.573 0 715.86
20412070 0.53 0.899 0.101 0.597 0.597 0 726.60
20712100 0.506 0.579 0.145 —0.276 0 0.276 329.57
ECHAMA4-B2 20112040 0.515 0.98 0.020 0.881 0.881 0 856.17
20412070 0.636 0.719 0.131 —0.15 0 0.15 386.75
2071-2100 0.625 0.859 0.141 0.233 0.233 0 561.30
V. latasti CGCM2-A2 20112040 0.433 0.433 0.000 —0.567 0 0.567 968.14
2041-2070 0.451 0.451 0.099 —0.451 0 0.451 1229.02
20712100 0.648 0.649 0.002 —0.348 0 0.348 1456.61
CGCM2-B2 20112040 0.8 0.805 0.006 —0.189 0 0.189 1811.27
2041-2070 0.583 0.583 0.000 —0.417 0 0.417 1302.59
2071-2100 0.75 0.997 0.003 0.326 0.326 0 2962.84
ECHAMA4-A2 20112040 0.698 0.705 0.010 —0.286 0 0.286 1513.02
2041-2070 0.661 0.674 0.020 —0.306 0 0.306 1469.10
20712100 0.784 0.985 0.015 0.241 0.241 0 2627.95
ECHAMA4-B2 20112040 0.729 0.754 0.035 —0.212 0 0.212 1669.30
2041-2070 0.856 0.938 0.062 0.033 0.033 0 2187.16
20712100 0.773 0.932 0.068 0.138 0.138 0 2407.90
A. fasciata CGCM2-A2 20112040 0.858 1 0.000 0.166 0.166 0 2251.11
20412070 0.741 1 0.000 0.35 0.35 0 2605.87
2071-2100 0.689 1 0.000 0.45 0.45 0 2798.89
CGCM2-B2 20112040 0.799 1 0.000 0.252 0.252 0 2423.85
2041-2070 0.731 1 0.000 0.368 0.368 0 2648.42
2071-2100 0.684 1 0.000 0.462 0.462 0 2830.40
ECHAM4-A2 20112040 0.77 0.97 0.030 0.229 0.229 0 2351.00
20412070 0.462 1 0.000 1.166 1.166 0 4142.15
2071-2100 0.678 0.931 0.069 0.305 0.305 0 2495.49
ECHAM4-B2 20112040 0.713 1 0.000 0.403 0.403 0 2683.03
2041-2070 0.533 1 0.000 0.878 0.878 0 3591.39
20712100 0.586 1 0.000 0.705 0.705 0 3260.56
C. pyrenaica CGCM2-A2 2011-2040 0.731 0.999 0.001 0.366 0.366 0 2056.25
20412070 0.588 1 0.000 0.701 0.701 0 2561.38
2071-2100 0.365 1 0.000 1.742 1.742 0 4128.31
CGCM2-A2 2011-2040 0.742 0.999 0.001 0.345 0.345 0 2027.69
20412070 0.652 1 0.000 0.533 0.533 0 2311.26
2071-2100 0.648 0.999 0.001 0.543 0.543 0 2325.79
ECHAM4-A2 20112040 0.818 0.993 0.007 0.206 0.206 0 1796.22
20412070 0.705 0.996 0.004 0.408 0.408 0 2096.12
2071-2100 0.522 1 0.000 0.916 0.916 0 2852.83
ECHAM4-B2 20112040 0.797 0.988 0.012 0.227 0.227 0 1826.95
20412070 0.643 1 0.000 0.555 0.555 0 2315.32
2071-2100 0.561 1 0.000 0.781 0.781 0 2651.99
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Figure 1. Favourability predicted at each 10 x 10 km UTM square of mainland Spain for A. dickhilleni according to each climatic model

and for each period.

the century with a net favourability loss during the final
three decades, whereas the opposite occurs with V. latasti
(Table 5).

For A. fasciata and C. pyrenaica, predicted maintenance
rates of the favourable areas were very high (>0.93) and
shifting rates were very low for all the AOGCMs and SRESs
used (Table 5, Fig. 3 and 4). No net loss of favourable areas
was detected for them, but important favourability expan-
sions were frequently predicted.

Table 6 shows the coincidences between predictions for
different  SRESs using the same AOGCM, and the
consistencies of results derived from different AOGCMs
assuming the same SRES. Coincidence values did not
differ significantly when using different AOGCMs, nor
did consistence values differ significantly when using
different SRESs. However, coincidences (mean =0.768,
n=24) were higher than consistencies (mean =0.668,
n=24) and these differences were statistically significant
(t=2.29, gl =46, p =0.027). This difference could not be
attributed to the different sets of climatic variables selected
in the different AOGCM-SRES combinations, because
after using the same variables in all the models (those
obtained in the ECHAM4-A2/B2 combination) differences
between coincidences (mean =0.838, n =24) and consis-
tencies (mean =0.679, n =24) were even higher and more
significant (t =4.405, gl =46, p <0.001).

Coincidences were significantly lower in ectotherms
when compared with endotherms (t= —2.996, gl =22,
p =0.007) and consistence values were also significantly
lower in ectotherms (t = —5.811, gl =22, p <0.001).

Discussion

Our results show that discrepancies between predictions
were more attributable to the lack of knowledge concerning
the effect of oceans and atmosphere on climate (general
circulation models) than to the putative effect of different
emission scenarios on future climate. Uncertainty is
inherent to the climate system and to nature in general
and, thus, cannot be avoided (Beaumont et al. 2008, Baer
and Risbey 2009). However, it can be, and should be,
assessed and taken into account when modelling biodiver-
sity responses to climate change (Aradjo et al. 2005).
Numerous factors contribute to the emergence of uncer-
tainties at each step of the process leading to modelling the
species response to climate change (Dormann et al. 2008),
and they are transmitted to the following steps (Beaumont
et al. 2007). Thus, we are addressing a kind of uncertainty
which arises at the final stage of the favourability modelling
procedure, but whose source resides in a previous step,
namely, in the depth of our knowledge about the effects on
global climate of oceans and the atmosphere, on the one
hand, and greenhouse gasses, on the other. Both consistence
and coincidence are inversely proportional to uncertainty.
Consistence provides information about the uncertainty
associated with our understanding of the basic principles
governing global climate, and uncertainty should be kept
low, that is, higher values of consistence are to be preferred.
However, it is not the case that every kind of uncertainty is
unhelpful, because that associated with the existence of
different SRESs is the kind of uncertainty we, as a human
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Figure 2. Favourability predicted at each 10 x 10 km UTM square of mainland Spain for V. lazasti according to each climatic model and
for each period.
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Figure 3. Favourability predicted at each 10 x 10 km UTM square of mainland Spain for A. fasciata according to each climatic model
and for each period.
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Figure 4. Favourability predicted at each 10 x 10 km UTM square of mainland Spain for C. pyrenaica according to each climatic model

and for each period.

society, can affect and, thus, is of value to emission policy
planning. If the expected responses of species to different
SRESs were similar, then uncertainty would be low, but this
would imply that the way we control our gas emissions will
not affect species distributions much. This may be useful
information for policy-making, but not for greenhouse
emissions policy planning, as the policy maker would have

Table 6. Coincidences between predictions using different SRESs for
each circulation model and consistencies between predictions for
each emission scenario using different AOGCMs.

Species Period Coincidences Consistencies

CGCM2 ECHAM4 A2 B2

A. dickhilleni 20112040  0.873 0.776 0.720 0.638
20412070  0.735 0.532 0.507 0.667

20712100  0.434 0.587 0.333 0.444

Mean 0.680 0.632 0.520 0.583

V. latasti 20112040 0.532 0.872 0.511 0.624
2041-2070  0.824 0.670 0.582 0.532

20712100  0.492 0.882 0.496 0.669

Mean 0.616 0.808 0.530 0.609

A. fasciata 20112040 0.863 0.839 0.872 0.803
2041-2070  0.881 0.867 0.629 0.729

20712100  0.884 0.756 0.801 0.841

Mean 0.876 0.821 0.767 0.791

C. pyrenaica 20112040  0.915 0.964 0.791 0.812

20412070  0.902 0.871 0.772  0.800
20712100  0.563 0.918 0.691 0.775
Mean 0.794 0.918 0.751 0.796

Total mean  0.738 0.787 0.635 0.688

no reason to prefer, by including the expected effect of the
emissions scenarios on species distribution in the cost/
benefit balance, one SRES to another. Consequently,
species distribution models will be more informative in
this respect if coincidences are lower.

In areas with great spatial variability of climate, such as
the Iberian Peninsula, it is particularly important to use
reliable AOGCMs to forecast future climate change
(Sénchez et al. 2004). Although our analyses did not
evaluate the reliability of AOGCMs, in order for general
knowledge on the effects of oceans and atmosphere to be
considered reliable it is a necessary, although not sufficient,
requirement that the uncertainty associated with the
differences between AOGCMs to be low. In our case,
competing AOGCMs differ in their simulation of average
climate values, thus generating a kind of uncertainty which
is implicit in the climate variables used in our models and
which is transmitted to our analyses. This adds to the
methodological uncertainty associated with the modelling
procedures (Thuiller et al. 2008), which the modelling
community can deal with through the analysis of different
modelling alternatives. Given that we used the same
methodology to produce all the models, it is unlikely that
our modelling procedure biased the uncertainty associated
with AOGCMs and SRESs. In this way, the uncertainty
associated with disagreements between different AOGCMs
could be assessed and compared to that associated with the
existence of different SRESs. The latter should be higher
than the former, as policy planners can only affect the
emission of gasses producing global warming. If uncertainty
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about the future distribution of areas favourable to a species
is not clearly associated with the different SRESs, then
choosing between them is not likely to produce the
difference desired for the future distribution of the species.

The use of fuzzy logic to assess the effect of climate
change on species distribution bypassed the loss of
information implicit in the use of a threshold for converting
model output values into predicted presences and absences
to be compared with actual data (Parra and Monahan 2008,
Randin et al. 2009). The fact that the favourability function
is a membership function was essential to calculate the
increment, overlap, maintenance, shifting, expansion, and
net loss of the predicted favourability for every species
preserving all the information included in the individual
favourability values. In this respect, our results are meant to
exemplify a useful way to assess the comparative effects of
AOGCMs and SRESs on simulations of future species
distributions.

The expected response to climate change tends to be
species-specific (see, for example, Levinsky et al. 2007,
Seoane and Carrascal 2008, Virkkala et al. 2008). Our
results suggest a negative effect of climate change on the
areas favourable to the ectotherm species A. dickhilleni and
V. latasti, whereas the other two species, A. fasciata and
C. pyreniaca, could benefit from a regional increase in
temperature (Table 4, Fig. 1, 2, 3 and 4). Although these
results concern too few species to warrant any general-
ization, they agree with those of Aragén et al. (2010), who
found that the influence of climate on Iberian species
distributions is stronger in ectothermic vertebrates. In
addition, coincidences were lower in ectotherms when
compared with endotherms, which seems to indicate that
the distribution of areas favourable to the more sensitive
amphibians and reptiles are more likely to be affected by
emission policy decisions than those of the endothermic
birds and mammals. However, our consistence values were
also lower in ectotherms and, thus, the overall informative
value was not really higher.

In summary, uncertainties related to the AOGCM
employed were bigger than those related to the SRES
used for every species analysed. This adds to accumulating
evidence that agreement between projections using different
AOGCMs is currently insufficient. Variation among
different AOGCMs was found to be larger than the
expected impact of the different SRESs when predicting
crop growth (Audsley et al. 2006), regional climatic features
(Rowell 2006, Déqué et al. 2007, Paeth et al. 2008) or river
flow regimes (Prudhomme and Davies 2009). An improve-
ment in knowledge on the effect of oceans and atmosphere
on climate is needed if really informative models are to be
produced. Our conclusion is that species distribution
models in climate warming scenarios are still not useful
for informing emission policy planning, although they have
great potential as tools once consistencies become higher
than coincidences.
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