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“Capsule”: The effects of diet composition and prey contamination added up to determine the spatial variation
of Hg levels in breeding Bonelli’s eagles.

Abstract

Mercury (Hg) was determined in adult Bonelli’s eagles (Hieraaetus fasciatus) and their avian prey, from samples of feathers
collected between 1992 and 2001 at the nesting sites of 21 pairs in Southwest Portugal. Eagle Hg levels showed great variation,
reflecting primarily differences in diet composition and food chain biomagnification. Concentrations were positively correlated with
the dietary proportion of insectivorous and omnivorous birds (e.g. egrets, corvids and thrushes), with very low levels for pairs feeding
mainly on herbivores (e.g. rabbits, pigeons and partridges). Differences in prey contamination among breeding territories added to
dietary effects in determining variation of Hg levels in eagles, shaping a spatial pattern that was largely consistent with a source of
contamination in a coal-burning power-plant lying upwind of the study area. Despite this presumed contamination, Hg levels seemed
to be of little concern to this eagle population, though there might be subtle deleterious effects on the reproductive output of a few
pairs. This study emphasizes the need to account for dietary effects when biomonitoring Hg contamination using birds of prey.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and enhanced mortality in association with high pollut-

ant burdens (Helander et al., 1982; Wiemeyer et al., 1984,

As top predators, birds of prey are exposed to an array
of persistent environmental contaminants that biomag-
nifies through food webs, especially organochlorine
pesticides, polychlorinated biphenyls (PCBs), and mer-
cury (Hg). Accumulation of these chemicals has been
particularly well documented for aquatic food webs,
where species such as sea eagles (Haliaetus spp.) and
ospreys (Pandion haliaetus) have shown poor breeding

* Corresponding author. Fax: +351 289818353.
E-mail address: lpalma@ualg.pt (L. Palma).
! Luis Rocha Monteiro (1962—1999).
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1988). Although much less documented, population
declines attributed to environmental contaminations
have also been shown for species feeding on terrestrial
food chains such as the sparrowhawk (Accipiter nisus)
(Newton et al., 1993). Because of this vulnerability to
a variety of contaminants, birds of prey have been used
extensively as biomonitors of environmental quality
(Bergetal., 1966; Lindberg and Odsj6, 1983; DesGranges
et al., 1998; Manosa et al., 2003).

Besides their high trophic status, many birds of prey
are territorial, non-migratory and long-lived, and so
pollutant burdens recorded in body soft tissues, bones,
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feathers and eggs are likely to reflect chemical contam-
ination within their extended home ranges. This view
underlies most biomonitoring programs, which assume,
often implicitly, that spatial or temporal variations in
pollutant burdens are coupled with comparable spatial or
temporal trends in environmental contamination. Al-
though this assumption may sometimes be warranted for
birds of prey (e.g. DesGranges et al., 1998), there are at
least some circumstances in which it may fall short of
reality. A major source of potential shortcomings is
related to diet composition, which may elicit variation in
pollutant burdens among individuals of the same species
collected at different locations or at different times,
irrespective of corresponding variation in environmental
contamination. For instance, some studies have linked
local peak contamination levels in bald eagles (Haliaetus
leucocephalus), golden eagles (Aquila chrysaetos) and
peregrine falcons (Falco peregrinus) with a high con-
sumption of aquatic birds such as waders and seabirds
(Lindberg and Odsjo, 1983; Parrish et al., 1983; Furness
et al., 1989; Anthony et al., 1999). Similar effects for
species feeding exclusively on terrestrial prey are scarce,
though recent evidence suggests that they may also occur
(Mafiosa et al., 2003). Clearly, there is a need to evaluate
in more detail the effects of diet composition on the
pollutant burdens of birds of prey feeding on terrestrial
food chains, and how these may confound the in-
terpretation of spatial or temporal patterns in environ-
mental contamination.

The present study addresses these issues, by analyzing
the relationships between diet composition, prey con-
tamination, and spatial variation of Hg levels in feathers
of Bonelli’s eagles (Hieraaetus fasciatus). These are
medium-sized eagles, whose numbers and range have
declined markedly in Europe, where they are restricted to
the Mediterranean region (Rocamora, 1994). Bonelli’s
eagles feed primarily on terrestrial birds and mammals,
showing significant geographical variation in diet com-
position depending on local habitat conditions (Real,
1991). The study was carried out in the uplands of south-
western Portugal, where a dense Bonelli’s eagle popula-
tion of great conservation significance lies downwind of
a coal-burning power-plant. Because of this, there were
concerns that these eagles could be exposed to an
important source of Hg contamination, with potential
negative repercussions upon their reproductive output
and health condition. This justified a closer examination
of factors underlying spatial variation in Hg burdens in
the eagles and their prey.

2. Materials and methods
2.1. Study area

Data were collected as part of a long-term study on the
Bonelli’s eagle in the uplands of Algarve and western

Alentejo (southern Portugal), from 21 out of 25 eagle
territories occupying about 3000 km? in a rough triangle
linking the mountains of Cercal (341 m), Monchique
(902 m) and Caldeirdo (589 m) (Fig. 1). The hilly
landscape is predominantly covered by cork oak
(Quercus suber) woods, dense Mediterranean scrub and
eucalyptus (Eucalyptus globulus) plantations, with sparse
human occupation. Bonelli’s eagles breed primarily in
large cork oaks, eucalyptus and pine trees (Pinus spp.),
and feed on domestic doves (Columba labia), red-legged
partridges (Alectoris rufa), jays (Garrulus glandarius),
rabbits (Oryctolagus cuniculus), and many other second-
ary prey (Palma, 1994; L. Palma, unpublished data). The
main potential source of Hg contamination is a coal-
burning power-plant located at Sines, on the north-
west corner of the study area (Freitas et al., 1999). No
additional sources of Hg contamination, either telluric
or agricultural, were identified within the study area.

2.2. Sampling procedures

2.2.1. Feather samples

From 1992 to 2001, shed feathers of adult Bonelli’s
eagles and feathers from avian prey remains were col-
lected from nests and neighbouring tree perches to
measure Hg levels. Active nests were visited three
times during each breeding season, between the end of
incubation and shortly after nest abandonment (March—
July), and feathers of each species were collected in
separate labelled plastic bags and stored in a freezer at
—20 °C. Eagle feather samples were obtained on only
2.3 + 1.1 SD (1-4) years per breeding pair, because the
location of some nests was unknown in early years of the
study, some pairs did not breed every year and shed
feathers were occasionally absent. Most eagle feathers
were probably from females, as they tend to spend far
more time near nests than males (Blondel et al., 1969;
Morvan and Dobchies, 1987; L. Palma, unpublished
data), and because the matching between sampling and
moulting periods was closer for females than for males
(L. Palma, unpublished data). Feathers were used as
monitoring units because Hg in feathers reflects body Hg
burden (Furness et al., 1986; Thompson et al., 1990) and
it is almost entirely in the mono-methylated form
(Thompson and Furness, 1989a,b). Furthermore, feath-
ers have been widely used to monitor Hg levels in
freshwater, marine and terrestrial bird species (Furness,
1993), including birds of prey (Dauwe et al., 2003). Only
body feathers were analysed, since they provide more
representative samples for estimating whole-bird Hg
content than flight feathers (Furness et al., 1986).

2.2.2. Diet composition

The diet of eagles in each individual breeding territory
was analysed from prey remains collected during the
visits to active nests and surrounding perches. Although
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Fig. 1. Locations in Southwest Portugal where feather samples of Bonelli’s eagles and their main avian prey were collected for the analysis of

Hg contamination (1992-2001). Main mountain ranges are indicated.

remains correspond primarily to prey consumed by
nestlings, they likely reflect also the diet of adults, which
regularly eat part of the prey delivered to the nests
(Blondel et al., 1969; Morvan and Dobchies, 1987
L. Palma, unpublished data). Remains were identified
with the help of keys to bird feathers and a reference
collection, and the minimum number of individuals in any
sample was estimated from the highest number of
identical bones of each prey type. This method tends to
underestimate the consumption of small prey yielding few
remains, while overestimating large prey or prey with
a large proportion of rejected parts, such as bird feathers
(Real, 1996). However, the method may be considered
useful in comparative studies like this one, which aim to
detect variation in the relative consumption of different
prey, and not estimating the absolute diet composition.
Because Hg contamination is strongly dependent on
trophic position (Dietz et al., 2000), prey items were
categorised according to whether they feed predomi-
nantly on plants or animals. Species such as rabbits,
partridges, wildfowl and seed-eating passerines were
classified as primary consumers, whereas species such as
egrets, gulls, birds of prey, corvids and other insectivore
passerines were classified as secondary consumers.

2.2.3. Mercury determinations
Feather samples were analysed for total Hg concen-
tration by Cold Vapour Atomic Absorption Spectros-

copy (CV-AAS). Samples were digested in a water bath
at 70 °C for 6 h by the addition of concentrated H,SOy.
After this period 5% KMnO, was added and the
solution kept at 70 °C for two more hours. The KMnO,
in excess was reduced with 20% NH,OH.HCIL. All
reagents used throughout the work were of analytical
grade. The glassware was previously decontaminated by
immersion in an HNOj 1:5 solution and then washed
with deionized water. Reproducibility was checked by
performing successive measurements with the same
sample. Relative standard deviations in the range
3-5% were found. Accuracy of the method was within
10% and was monitored analysing reference materials:
tuna muscle 350 (International Atomic Energy Agency,
Monaco) and RM50 (USA National Bureau of Stand-
ards for Biological Material). Minimum detection
limits (MDL) of 0.01 ng Hg/g digested sample were
quantified using the Kaiser—Currie method (Gibbons
and Coleman, 2001). Interferences due to matrix and the
pre-treatment were assessed by the method of standard
additions before the wet mineralization procedure.
Recoveries of added Hg were close to 100%. Hg
concentration is given on a wet weight basis.

2.2.4. Statistical analysis

Mean Hg concentrations were computed for feather
samples collected from each Bonelli’s eagle pair in any
given year. The overall Hg concentration corresponding
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to each breeding pair was then quantified as the mean of
concentrations estimated in different years. Samples
from avian prey were treated likewise. Before statistical
analysis, nondetected measurements were replaced by
half the detection limit (Gibbons and Coleman, 2001),
and Hg concentrations were log-transformed to ap-
proach normality and homogenising variances (Zar,
1996). The arcsine transformation was used likewise for
percentage data quantifying diet composition. Differ-
ences in Hg levels between species at matching locations
were compared using paired-samples ¢-tests (Zar, 1996).
Significance levels were corrected for multiple compar-
isons using the sequential Bonferroni technique (Rice,
1989). Pearson correlations and regression analyses were
used to evaluate the relationships between ecagle Hg
levels, diet composition and avian prey contamination
(Zar, 1996).

Spatial patterns in Hg levels for eagles and their main
prey were mapped by interpolating to a continuous grid,
the concentrations recorded at sampling locations, using
inverse-distance weighing (Legendre and Legendre,
1998). Residuals of the regression equation relating
eagle Hg levels to diet composition were also mapped, to
illustrate the spatial contamination patterns after
statistically accounting for dietary effects. In distance
weighing, the extinction rule was 1/ (r is the distance
between grid and sampling points), producing a smooth
surface and avoiding the need to introduce an artificial
cut-off distance (Legendre and Legendre, 1998).

3. Results
3.1. Diet

Eagle diets were described from an average
24.6 + 15.2 SD (5-64) prey remains identified per eagle
pair (Table 1). Almost half the overall remains were
pigeons, over 95% of which were identified as domestic
pigeons. Other important prey items were red-legged
partridges, rabbits and corvids, about 75% of which were
jays. Only 17.5% of prey remains corresponded to species
categorised as secondary consumers, though their rela-
tive importance in the diet varied markedly among
breeding pairs, from about 2.1% to 44.4%. Over 95% of
individual prey identified corresponded to terrestrial
species, with only gulls and mallards (Anas plathyrhyn-
chos) feeding regularly on aquatic food chains.

3.2. Eagle and avian prey Hg levels

Bonelli’s eagles, red-legged partridges, domestic
pigeons and jays showed some marked differences in
their Hg concentrations (Table 2). Eagles showed
much higher Hg concentrations than both partridges
(t1ig = 7.513, P <0.001) and pigeons (t19 = 9.822,

Table 1

Composition of Bonelli’s eagle diet in Southwest Portugal (1992—
2001), as assessed from the remains of 541 identified preys recovered
from the nests of 21 breeding pairs

Prey items N %

Birds
Cattle egret Bubulcus ibis 11 2.0
Gulls Larus spp. 17 3.1
Red-legged partridge Alectoris rufa 92 17.0
Domestic fowl Gallus gallus 20 3.7
Pigeons Columba spp. 256 47.3
Corvids Corvidae 43 7.9
Thrushes Turdidae 12 2.2
Other birds Mainly Anatidae, 23 43

Picidae and Strigidae

Mammals
Rabbit Oryctolagus cuniculus 67 12.4
Hare Lepus granatensis 1 0.2

N = number of individual prey items; % = percentage of total prey
recovered.

P < 0.001), but they had similar levels to those of jays
(t10 =1.630, P > 0.1). Likewise, levels in jays were much
higher than in partridges (t9 = 7.434, P < 0.001) and
pigeons (t;9 = 8.195, P < 0.001). Concentrations of Hg
in partridges and pigeons were virtually identical
(t16 = 0.111, P > 0.9).

3.3. Effects of diet and prey contamination

Relationships between eagle Hg levels and diet
compositions were assessed using the 17 breeding pairs
for which there were more than 10 prey remains. Hg
concentrations were negatively correlated with the
dietary proportion of pigeons (r = —0.529, P < 0.05),
but not with those of partridges (r = 0.233, P > 0.4),
jays (r=0.381, P>0.1) and rabbits (r= 0.003,
P > 0.9). Analyses for other prey items were not made
because they occurred too infrequently in eagle’s diet. A
strong positive correlation was found for prey categor-
ised as secondary consumers (r = 0.813, P < 0.001),
reflecting the strong influence of prey trophic position
on eagle Hg levels (Fig. 2).

Concentrations of Hg in eagles were correlated with
those in jays (r = 0.634, P < 0.05, n = 11), but not with

Table 2

Means, standard deviations and ranges of Hg concentrations (ug g~ '
wet weight) in feather samples of Bonelli’s eagles and their main avian
prey collected in Southwest Portugal (1992-2001)

Species N Mean Standard deviation Range
Bonelli’s eagle 21 194 1.54 0.25-5.42
Domestic pigeon 20 0.13  0.17 <MDL-0.70
Red-legged partridge 18 0.11  0.11 <MDL-0.46
Jay 11 1.58  0.71 0.83-3.41

N = number of breeding pairs from which samples were collected;
MDL = Minimum Detection Limit.
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Fig. 2. Mean Hg concentrations (log-transformed; y) recorded in 17 Bonelli’s eagle pairs breeding in Southwest Portugal (1992-2001), as a function

of the dietary proportion (arcsine-transformed; x) of secondary consumers.

those in either partridges (r = —0.064, P > 0.7, n = 19)
or pigeons (r = 0.190, P > 0.4, n = 20). In a multiple
regression accounting for both the effects of diet
composition and prey contamination, variation in Hg
levels in eagles could be explained to a very large extent
by the positive effects of the dietary proportion of
secondary consumers and the concentration of Hg in
jays (Table 3). Hg concentrations in pigeons and
partridges never showed significant effects in similar
multiple regressions relating eagle Hg levels with diet
composition and prey contamination.

3.4. Spatial patterns

Hg levels in Bonelli’s eagles tended to decline
eastwards from the relatively high values recorded along
the western portion of the coastal mountain ranges of
Cercal and Monchique to the low values found in the
eastern Caldeirdao uplands (Fig. 3). However, high
values were also found in one pair breeding along the
north-eastern edge of the study area, and in two pairs
breeding southeast of Monchique. The residuals of the
regression equation between eagle Hg levels and the
dietary proportion of secondary consumers (Fig. 2) were
used to illustrate the spatial distribution of eagle
contamination after correcting for dietary variation
(Fig. 3). The emerging spatial pattern underlined the
contrast between the western and eastern part of the
study area, with the highest Hg levels concentrating
around Monchique and the lowest in Caldeirdo. High
contamination values were also found in two pairs
breeding on the north-eastern border of the study area.

For the three avian prey species there were differences
in detail for the spatial patterns of Hg contamination,
though they all showed a trend for higher values in the

western part of the study area (Fig. 3). Furthermore, the
highest Hg levels in both pigeons and jays were recorded
in the mountain of Cercal, in the sampling site closest to
the industrial complex of Sines (Fig. 3). There were,
however, exceptions to the west—east gradient of de-
clining Hg levels, with some high values also recorded at
the eastern end of Caldeirdo for both pigeons and
partridges.

4. Discussion

The Hg levels found in feathers of Bonelli’s eagles
breeding in the uplands of south-western Portugal
showed great variation, which seemed to reflect primar-
ily differences in diet composition and food chain
biomagnification. The highest concentrations were
recorded in pairs incorporating a high proportion of
secondary consumers in their diet, whereas much lower
values were found for eagles feeding almost exclusively
on herbivores such as rabbits, pigeons and partridges.
Comparable effects of trophic chain length have been

Table 3

Multiple linear regression relating Hg concentrations in 10 Bonelli’s
eagle pairs breeding in Southwest Portugal, to prey contamination and
diet composition (R> = 0.954, F,; = 35.676, P < 0.001)

Variables Regression t P
coefficients
Intercept —0.678 —4.181 <0.01
Concentration of Hg 1.716 4.577 <0.01
in jays (log-transformed)
Dietary proportion 1.461 4.302 <0.01

of secondary consumers
(arcsine-transformed)

ENPO3054_proof m 12 July 2004 m 5/9

313
314
315
316
317
318
319
320

321

322
323
324
325
326
327
328
329
330
331



332
333
334
335
336
337
338
339
340

6 L. Palma et al. | Environmental Pollution mm (2004) amm-mum

Bonelli's eagle

Red-legged partridge

Bonelli's eagle
(corrected for diet variation)

Domestic pigeon

4 N\
Spatial patterns in
mercury levels
Bl -osuoe
[ -2--156.pev.
I ‘ -1 -0 Std. Dev.
0- 1 Std. Dev.
I 1-2std.Dev.
Bl -:suoen.
(2 Sampling sites
N/ 300misoline
0 20 Km
e _/

Fig. 3. Spatial distribution of Hg concentrations measured in Bonelli’s eagles and their main avian prey. Values are given as standard deviations from
the mean, to increase comparability among maps. Eagle data corrected for diet composition are the residuals of the linear regression depicted in
Fig. 2, between eagle Hg levels and the dietary proportion of secondary consumers.

noted mainly in marine and freshwater systems (e.g.
Elliot et al., 1996; Anthony et al., 1999), with
comparable data generally lacking for terrestrial food
webs. In a study involving organochlorine contaminants
in goshawk (Accipiter gentilis) eggs, however, Mafosa
et al. (2003) also documented the highest concentrations
in association with a higher consumption of passerine
birds relative to that of rabbits. The paucity of data for
terrestrial chains is probably related to their shorter

length in relation to that of aquatic ones, which lessens
the potential for Hg biomagnification along the food
web (Dietz et al., 2000). Nevertheless, this study strongly
suggests that food web length in terrestrial systems may
also be a major source of variation in Hg contamination
for top predators such as the Bonelli’s eagle, which can
feed at multiple trophic levels.

After statistically accounting for dietary effects, Hg
concentrations in eagles also reflected the contamination
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level in some of their prey. Indeed, there was a strong
correlation between Hg concentrations in feathers of
eagles and jays, though no such relationship was
apparent for pigeons and partridges. The general
pattern for other secondary consumers might have been
similar to that recorded for jays, though the shortage of
feather samples precluded the testing of this hypothesis.
Lack of relationship between eagle and pigeon contam-
ination was unexpected, as these are the staple food of
eagles. However, Hg levels were very low in herbivorous
prey, which suggests that eagles acquire most of their
burden through the intake of secondary consumers.
Additional information on the sources of variability in
prey contamination is needed to gain a better un-
derstanding of the mechanisms leading to Hg accumu-
lation in the eagles.

The strong relationship between eagle Hg levels, diet
composition and contamination of prey collected from
nests, suggests that concentrations found in shed body
feathers probably resulted primarily from exposure
during the breeding season. In the study area, adult
eagles are largely resident within the breeding territories,
starting to visit the nests in November, long before the
shed feathers could be found, and remaining in the
surroundings at least until juvenile emancipation in
August—September (L. Palma, unpublished data). The
shed body feathers analysed were generally collected in
the late nestling and early fledging periods (>85% in
April-June), corresponding to the post-nuptial moult,
which may extend until early autumn (Parellada, 1984; L.
Palma, unpublished data). These shed feathers grew
during the previous moulting season, thus receiving Hg
that had been stored in body tissues over the preceding
months (Furness et al., 1986; Furness, 1993; Dauwe et al.,
2003). Hg probably accumulated in the adult eagles
mainly while foraging within their extended breeding
ranges, thus integrating contamination from areas lying
in general within 10 km from the nests (L. Palma,
unpublished data). This supports the assumption that
variation among pairs in the concentrations recorded in
shed feathers should reflect at least partly the broad scale
spatial trends in environmental contamination, once the
dietary effects are accounted for.

Regional Hg concentration trends in prey species and
in Bonelli’s eagles, after correcting for dietary variation,
broadly agree with the hypothesis of a contamination
source in the industrial complex of Sines, presumably
associated with the coal-burning power-plant, though
there were differences among species. Reasons for these
differences are unclear, but they may probably be
attributed to local factors and sampling variability,
which likely added to the large scale contamination trend
in influencing the spatial patterns observed. These local
factors are impossible to assess with the data collected,
but they may result from variation among eagle breeding
territories concerning the diets or feeding habitats of the

prey species captured. Despite these confounding factors,
there was a general trend for higher Hg levels in the
western uplands of Cercal and Monchique, which lie
immediately downwind of the industrial complex and are
thus probably more likely to be contaminated from
airborne pollutants than the eastern Caldeirio moun-
tains. Furthermore, precipitation along the coastal
uplands, particularly in Monchique, is in general much
higher than further inland, which may favour the
removal from the atmosphere and local wet deposition
of Hg emitted in combustion facilities (Carpi, 1997). This
view is also supported by the distribution in lichens of
pollutants presumably originating from the Sines coal-
powered electric plant, namely Hg, sulphur and selenium,
which tended to show higher concentrations in the
western uplands than in the east (Freitas et al., 1999).
Although comparable patterns were not readily apparent
in a similar study using mosses (Figueira et al., 2002),
these results call for a more detailed examination of the
distribution and biological effects of contaminants
emitted from Sines up to several tens of kilometres from
the source. This is particularly important in the case of
Hg, which biomagnify through food chains and may
negatively affect endangered top predators such as the
Bonelli’s cagle.

Although the mean Hg contamination recorded in
eagles can be considered generally low, the highest levels
detected might be of concern regarding eventual adverse
impacts on the breeding productivity of some individual
pairs (Berg et al., 1966; Lindberg and Odsjo, 1983;
Parrish et al.,, 1983; Movalli, 2000). Establishing
a benchmark for critical Hg concentrations in feathers
is difficult, however, because Hg bonded to keratin and
sequestered in feathers no longer represents a risk to the
bird (Furness, 1993), and its levels may be uncorrelated
with concentrations in eggs (e.g. DesGranges et al.,
1998). Nevertheless, Hg concentrations in eagle feathers
reported in this study, were correlated with those found
in a small sample of addled eggs (n = 13) collected from
10 breeding territories in a concurrent study (Blanco,
2001). There was a strong linear relationship between
Hg levels in feathers and eggs from individual pairs
(R*=0.772, F;5=27.078, P <0.001), with feather
levels of 4.1 pgg' corresponding to eggs containing
the benchmark of 1.0 pgg ™' (wet weight). This concen-
tration may be the lowest associated with deformities of
particularly sensitive embryos, though it is unlikely to
affect more than a small percentage of eggs (Heinz and
Hoffman, 2003). In this study, only two out of 21
Bonelli’s eagle pairs (9.5%) showed feather levels in
excess of this threshold (4.3-5.4 ugg™'), and may thus
be considered moderately susceptible to reproduction
impairment due to Hg contamination. For the overall
breeding population, however, it is unlikely that Hg
contamination can negatively affect the reproductive
output.
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Results from this study add to a body of evidence
derived primarily from aquatic food webs, suggesting
that diet variation may have major confounding effects
in studies biomonitoring environmental contamination
using birds of prey (Anthony et al., 1999; Manosa et al.,
2003). To overcome potential shortcomings, some
authors recommended that bird species with narrow
and inflexible diets should be used in contamination
studies, rather than generalist feeders (Monteiro and
Furness, 1995). However, true dietary specialists are
probably hard to find, and so the critical assumption of
constant diets across space and time may frequently be
unwarranted. A detailed knowledge of diet variation
and the statistical control of dietary influences, as in this
study, may thus be generally required to derive
meaningful trends in Hg environmental contamination
from the corresponding spatial or temporal variation in
concentrations recorded in birds of prey.
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