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SELECTING THE BEST HOME RANGE MODEL:
AN INFORMATION-THEORETIC APPROACH
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Abstract. Choosing an appropriate home range model is important for describing space
use by animals and understanding the ecological processes affecting animal movement.
Traditional approaches for choosing among home range models have not resulted in general,
consistent, and unambiguous criteria that can be applied to individual data sets. We present a
new application of information-theoretic model selection that overcomes many of the
limitations of traditional approaches, as follows. (1) It alleviates the need to know the true
home range to assess home range models, thus allowing performance to be evaluated with data
on individual animals. (2) The best model can be chosen from a set of candidate models with
the proper balance between fit and complexity. (3) If candidate home range models are based
on underlying ecological processes, researchers can use the selected model not only to describe
the home range, but also to infer the importance of various ecological processes affecting
animal movements within the home range.

Key words: Akaike’s information criterion; exponential power function; home range; information-
theoretic approach; Kullback-Leibler distance; likelihood cross-validation criterion; model selection;
utilization distribution.

INTRODUCTION

When animals confine their movements to a particular

area, we typically define this area as the home range (Burt

1943). The size, shape, structure, and location of the home

range may be affected by predator�prey relationships

(Stamps 1995), competition (Bowers et al. 1979, Minta

1992), location of important resources (Powell 2000), or

social pressures and mating systems (Conner et al. 1999).

Therefore, accurate portrayal of the home range can

provide vital insight into important ecological processes,

and ecologists have been challenged to develop methods

for its estimation.

Home ranges are usually modeled (i.e., approximated)

from a sample of locations that are used to infer where an

animal occurred but was not observed. The number of

methods for estimating the home range is large and

increasing. For example,Harris et al. (1990) reviewed four

methods, Robertson et al. (1998) assessed the perform-

ance of seven, and Kernohan et al. (2001) evaluated 12

methods. Because of the importance of accurately depict-

ing the home range in ecological studies, it is important to

have objective criteria for evaluating their performance

and choosing the best method for a set of location data.

Home range models are usually evaluated by compar-

ing assumptions and methodology, using computer

simulations, and testing goodness of fit. However, these

approaches have not produced consistent, unambiguous,

and generally applicable criteria for identifying the best

home range model for a particular data set. We present a

new application of information-theoretic model selection

(i.e., choosing the best home range model) that over-

comes many of the limitations of traditional approaches.

CHOOSING A HOME RANGE MODEL

A common approach to evaluating home range

models has been to qualitatively compare assumptions

and methodology and then summarize the strengths and

weaknesses of each home range method (Anderson

1982, Harris et al. 1990, White and Garrott 1990,

Kernohan et al. 2001). Although methodological com-

parisons have been beneficial in providing a thorough

description of available methods, they fail to incorporate

one of the most important criteria in selecting the most

appropriate model; that is, how close a particular model

is to the true home range (i.e., fit). To assess model fit,

several authors have used computer simulations to

generate known home ranges and then have compared

the fit of various home range models to the simulated

distribution (e.g., Boulanger and White 1990, Seaman et

al. 1999, Worton 1995). Despite the power of using

simulations to evaluate home range models, these

studies often show that the performance of a particular

home range model depends on the characteristics of the

assumed true distribution. An alternative to using

methodological comparisons or computer simulations

is to ‘‘let the data speak’’ by using statistical tests to

determine whether a set of locations is consistent with an

assumed statistical model (e.g., Samuel and Garton

1985). However, these tests have not been extended as a

general approach beyond the bivariate uniform and

bivariate normal distributions, and this approach is
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open to criticisms of testing trivial null hypotheses and

the associated problems of power and biological

significance (Anderson et al. 2000).

An information-theoretic approach

We suggest that a better approach for choosing the

best home range model is to apply the theory and

methods of information-theoretic model selection (John-

son and Omland 2004). Model selection is built on the

philosophy that all models are only estimates of reality

and that no single model is ever ‘‘true’’ or likely to

perform well in all situations (Hilborn and Mangel

1997). Thus, a more appropriate question would be

which of a set of approximating home range models has

the most support from the data.

Many scientific investigations rely on finding the best

model out of a set of competing models with ‘‘best ’’

defined as the smallest discrepancy between the approx-

imating and the true model (Linhart and Zucchini 1986).

Kullback-Leibler (KL) distance, described as the ‘‘infor-

mation lost’’ when a fitted model ( f̂ (x)) is used to

approximate the true model ( f (x)) (Burnham and

Anderson 1998:37), is commonly used as a measure of

discrepancy because of its connection with information

theory (Kullback 1959). Model selection based on mini-

mizing KL distance has been used increasingly in other

areas of ecological research (e.g., Anderson et al. 1994,

Harig and Fausch 2002), and we show how this approach

can be used for home range model selection as well.

The goal of information-theoretic model selection is

to choose the model with the smallest Kullback-Leibler

(KL) distance, defined as

KL f ; f̂
� �

¼
Z

f xð Þln f ðxÞ
f̂ ðxÞ

 !
dx

where f is the true probability density of random

variable(s) x and f̂ is the probability density of the

approximating model. Because the true underlying

distribution, f, is unknown, direct calculation of

KL( f, f̂ ) is impossible. Therefore, various criteria have

been developed to estimate the relative expected KL

distance. One such is Akaike’s information criterion

(AIC) (Akaike 1973, Sakamoto et al. 1987):

AIC ¼ �2lnð f̂ ðxÞÞ þ 2K

where ln( f̂ (x)) is the maximized log-likelihood of the

approximating model and K is the number of estimated

model parameters. When the ratio of sample size/K is

small ( i.e., ,40), Burnham and Anderson (1998) suggest

using the second-order variant of AIC (AICc):

AICc ¼ AICþ 2KðK þ 1Þ
n� K � 1

where n is the sample size. The relative support for

model j can be determined by the difference (DAICj ) in

AIC (or AICc) between model j and the lowest AIC.

A less familiar, but more general, criterion for

selecting the model with the smallest KL distance is

likelihood cross-validation (Stone 1974, Geisser 1975,

Linhart and Zucchini 1986). The likelihood cross-

validation criterion is defined as

CVC ¼ �2 3
Xn

i¼1

ln f̂�iðxiÞ

for i ¼ 1 to n samples, where f̂�i (xi) is the density

calculated for sample xi without that sample being used

to estimate f̂ . Cross-validation was a technique originally

employed for assessing the performance of a single

model. However, Stone (1974) showed that it could also

be used for choosing among models and later demon-

strated asymptotic equivalence with AIC (Stone 1977).

Analogous to AIC, the relative support for model j can

be determined by the difference (DCVCj ) in CVC

between model j and the lowest CVC. Unlike AIC, the

number of model parameters (i.e., complexity) is not

explicit in CVC. To understand how CVC favors models

with fewer parameters, it is important to understand the

problem of overfitting. Overfit models are the result of

having too many parameters for the amount of data used

to specify those parameters. The result of overfitting is

highly variable models that fit closely to the data used to

construct the model, but predict novel observations

poorly. By holding one sample out, constructing the

model with the rest of the data, and then evaluating the

fit of the model at the held-out location, CVC essentially

evaluates the predictive ability of a model. Thus, highly

variable models with too many parameters relative to n

are penalized for poor predictions.

The home range as a probability density function

To use AIC or CVC, the approximating model must be

defined in terms of a probability density function.

Therefore, it is important to emphasize the equality

among the concepts of home range, utilization distribu-

tion, and probability density function (Anderson 1982).

Home range was recently defined as ‘‘the extent of area

with a defined probability of occurrence of an animal

during a specified time period’’ (Kernohan et al.

2001:126). This definition follows directly from that of

previous authors who described the home range in a

probabilistic manner (Hayne 1949, Calhoun and Casby

1958, Jennrich and Turner 1969). Calhoun and Casby

(1958:2) introduced the ‘‘density function’’ as ‘‘a math-

ematical expression representing the probability of an

animal being present in some arbitrarily small area’’ and

Jennrich and Turner (1969:232) later described this

density function as the ‘‘utilization distribution.’’ The

important connection is that the definition of the

utilization distribution (i.e., home range) is the same as

a bivariate probability density function. For continuous

variates (i.e., x, y), the volume under a bivariate proba-

bility density function in some defined area describes the

probability that an unrealized random ‘‘location’’ will

occur in that area (Hastings and Peacock 1975).
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APPLICATION TO REAL AND SIMULATED DATA

Animal location data

We applied information-theoretic home range model

selection to location data representing a variety of

sample sizes, taxa, and possible patterns of space use

(Supplement 1). For each animal, we calculated home

range estimates using six home range models. Three of

these are common home range estimation methods,

including the bivariate normal (BVN) (Jennrich and

Turner 1969), and the nonparametric fixed (FK) and

adaptive kernel (AK) methods (Worton 1989). For the

kernel models, we used likelihood cross-validation to

choose the smoothing parameter (Horne and Garton, in

press). In addition to these, we developed three other

home range models. Two of these were based on the

‘‘multinuclear’’ home range suggested by Don and

Rennolls (1983:71) and the third was based on a

uniform distribution of space use (e.g., Schoener 1981).

To accommodate animals that might have two centers

of activity, we developed a two-mode bivariate circular

normal mix (2CN) and a more general two-mode

bivariate normal mix (2BVN). The 2CN model was

defined as

f̂ 2CNðx; yÞ ¼ D1 3 mþ D2ð1� mÞ

where Di is a bivariate circular distribution and m is the

proportional contribution of D1. The 2BVN was a

generalized version of the 2CN with each Di component

defined as a bivariate normal distribution. Parameters

for 2CN and 2BVN were estimated by maximum

likelihood using the simplex algorithm (Press et al. 1986).

It is likely that many animals would not conform to the

aforementioned home range models if their space use

were more uniform (e.g., territorial animals in uniform

habitat) than unimodal, bimodal, or multimodal. Be-

cause of the absence of home range models that describe

a uniform distribution, we used a bivariate exponential

power model (CU) to allow for a circular uniform

distribution of space use. The CU was defined as

f̂ CUðx; yÞ

¼ 2

c2pa2CðcÞ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� lxÞ2þðy� lyÞ2

q
a

0
@

1
A

2=c2
64

3
75

where C is the gamma function, l is the center of the

distribution, a . 0 is the scale parameter, and c . 0 is the

shape parameter (Robledo-Arnuncio and Gil 2005).

Parameters were estimated using maximum likelihood

(Mineo 2003). A particular case of the exponential power

model is the normal distribution (i.e., c¼ 1), but it also

allows for leptokurtic (i.e., c . 1) and platykurtic (i.e.,

c , 1) distributions. It is the platykurtic nature of the

distribution that makes it useful for modeling uniform

distributions. In fact, as c tends to 0, the exponential

power model tends toward a circular uniform distribu-

tion with radius¼ a (Fig. 1). Because we wanted a model

for uniformly distributed space use, we bounded c by

0 , c , 1.

Results of model selection

We calculated CVC for all home range models and

AICc for all parametric models (i.e., all except non-

parametric kernel models) using a program written in

Visual Basic (see Supplement 2). The best model was

determined by the lowest CVC or AICc, but we

considered models with DCVC or DAICc , 3 to be

competing best models (Burnham and Anderson 1998).

When AICc was used to determine the best model, we

found a relationship between sample size and complexity

(i.e., number of parameters) of the best model. As sam-

ple size increased, models with greater complexity were

generally more likely to be the best model (Table 1).

When CVC was used, we were able to compare the

performance of the nonparametric kernel methods

against the parametric models and found that kernel

methods were often selected as the best model (Table 2).

Indeed, there was only one (elk) out of six species for

which either the adaptive or fixed kernel model was not

a competing best model. Within the kernel models,

neither fixed nor adaptive was consistently best.

Simulated data: AIC vs. CVC

Because of few direct comparisons between the

performance of AIC and CVC, we were interested in

comparing AIC vs. CVC model selection when a true

distribution of space use was known. Therefore, we

generated a unimodal bivariate normal and a bimodal

bivariate normal mix to represent an animal’s true space

use (Appendix A). We then simulated animal location

data by drawing 100 replicate random samples of size

30, 50, 100, and 200 from each distribution. For each

sample of locations, we calculated AICc and CVC for

the four parametric home range models (i.e., CU, BVN,

2CN, 2BVN) and determined the percentage of the 100

replicate samples where each model was considered a

competing best model (i.e., DCVC or DAICc , 3). We

found that AIC and CVC performed similarly in

choosing the true data-generating model as the best

FIG. 1. Probability density function for one-dimensional
exponential power model showing the effect of the shape
parameter (c). For all three distributions, the location
parameter (x) ¼ 4, and the scale parameter (a)¼ 1.5.
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model, although there was more model selection

uncertainty at smaller sample sizes (i.e., 30), and

especially for the more complex bimodal distribution

(Appendix B).

DISCUSSION

An important goal of home range estimation is to gain

insight into the underlying distribution of space use of a

particular animal or group of animals. However,

specifying the true distribution is a lofty endeavor

because of the complexity of ecological systems and

because of limited data for model specification. An

alternative is to build simplified approximating models,

sufficiently close to the true distribution, that are useful

for prediction and inference. The goal of information-

theoretic model selection is to assist in deciding which

approximating models are closer to truth than others.

Selection criteria must take into account two compo-

nents that cause an approximating model to deviate

from the true distribution (Linhart and Zucchini 1986).

First, if the approximating model is a poor description

of the process, or assumptions about the underlying

distribution are too rigid (i.e., too few parameters), then

that particular model will have a high error of

approximation. The second component contributing to

the overall discrepancy is the result of having limited

data with which to estimate model parameters. When

too many parameters are fit with too few data, models

will be inconsistent. That is, repeated sampling under the

same conditions would lead to widely varying home

range estimates. The benefit of using AIC and CVC as

selection criteria is that both components of discrepancy

are taken into account, resulting in a model that fits the

data well (i.e., small error due to approximation) and yet

is not overly variable (i.e., small error due to estimation)

(Fig. 2).

Implementing AIC and CVC model selection

In choosing whether to use AIC or CVC, results from

our simulations did not suggest favoring AIC or CVC.

Additionally, we found no compelling theoretical argu-

ments favoring one vs. the other (Shibata 1989,

Burnham and Anderson 1998). There are subtle differ-

ences. (1) AIC, as a measure of the relative expected KL

distance, was developed under the assumption that one

of the approximating models is either equal to or very

close to the true model, whereas CVC is not restricted by

this assumption (Shibata 1989). (2) Because model

parameters are estimated using n � 1 data, CVC has

been criticized for the accompanying loss of information

in model development (Picard and Cook 1984). How-

ever, in the context of home range estimation, we feel

that neither of these differences would invalidate the use

of AIC or CVC as a general, objective way to choose the

best home range model. We do suggest that future

research should more thoroughly investigate the per-

formance of AIC vs. CVC home range model selection

with particular emphasis on variability, sensitivity to

outliers and sample size, as well as robustness to model

misspecification. Variability of each criterion could be

assessed using straightforward application of bootstrap

methods (Burnham and Anderson 1998:127�130).
Incorporating AIC and CVC as standard output of

home range software would be relatively straightfor-

TABLE 2. Application of cross-validation score (CVC) to determine the best home range model (DCVC ¼ 0, boldface) for six
animals.

DCVC

Model np� Bobcat (20) Warbler (32) Turtle (35) Elk (51) Black bear (64) Hawk (102)

CU 4 27.8 17.5 48.2 3.0 144.3 141.9
BVN 6 12.3 0 44.2 0 97.5 33.6
2CN 7 7.1 8.0 43.4 0.2 48.0 54.9
2BVN 11 20.3 21.1 27.4 6.2 44.6 11.2
FK 0 0.5 0.8 4.8 3.8 0
AK 0.4 0.4 0 4.1 0 1.5

Note: The number of locations for each animal is given in parentheses.
� The number of parameters for each model.

TABLE 1. Application of Akaike’s information criterion (AICc) to determine the best parametric home range model (DAICc¼ 0,
boldface) for six animals.

DAICc

Model np� Bobcat (20) Warbler (32) Turtle (35) Elk (51) Black bear (64) Hawk (102)

CU 4 0 16.9 23.0 8.4 100.4 130.1
BVN 6 3.3 0 12.8 0 53.2 20.3
2CN 7 9.5 10.8 16.2 4.4 9.2 32.0
2BVN 11 28.5 13.2 0 12.4 0 0

Note: The number of locations for each animal is given in parentheses.
� The number of parameters for each model.
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ward. For AIC, the log-likelihood of each model can be

calculated directly from estimates of the utilization

distribution. After the log-likelihood is determined, one

needs only to specify the number of parameters. For

CVC, an iterative loop can be employed to sum the log-

likelihoods at each location without that location being

used to estimate the model. Although computations are

more intensive for CVC (i.e., parameters must be

estimated n times), we did not find that computation

time prevented using this approach.

Beyond computational ease, using AIC as a relative

measure of KL distance is supported by well-developed

statistical theory (see Akaike 1973, Sakamoto et al.

1987, Burnham and Anderson 1998) as well as practical

guidelines for implementing AIC in ecological studies

(Anderson and Burnham 2002, Johnson and Omland

2004). If there is significant model selection uncertainty,

an AIC-based model-averaging approach can be used to

estimate parameters and make predictions. The main

limitation of using AIC for home range model selection

is that the number of estimable parameters must be

specified. Thus, kernel methods cannot be included as

competing models. When kernel models are included in

the set of approximating models, CVC may be used as a

naı̈ve approach to evaluate models by means of their

forecasts (Hjorth 1994).

As a final practical consideration, it is important to

realize that AIC and CVC are only approximations of

the relative expected KL distance. Therefore, despite

asymptotic equivalence, we should not expect them to be

equivalent for a given set of locations (see Tables 1

and 2). Indeed, AIC and CVC might not even agree on

which is the ‘‘best’’ model in every situation. Although

this result is possible, it only happened for one of our

example animals (bobcat), and our simulations demon-

strated that agreement was quite likely, especially at

sample sizes �50. We do not think these discrepancies to

be a failure of AIC or CVC, but believe that they only

strengthen the point that, without knowledge of the

truth, there will be model selection uncertainty and this

may be exacerbated at small sample sizes.

Beyond home range description

Kernohan et al. (2001:160) suggested that our under-

standing of an animal’s ecology is limited when ‘‘home

range estimation does not examine meaningful hypoth-

eses about factors underlying an animal’s movements

and behavior.’’ A major benefit of using information-

theoretic home range model selection is that it encour-

ages us to ask questions about the ecological processes

affecting animal space use. If candidate models are

chosen to reflect different hypotheses about how certain

ecological processes affect space use, then the degree to

which different models are supported by the data reflects

the strength of support for their corresponding hypoth-

eses (Hilborn and Mangel 1997).

FIG. 2. Example of different space use patterns by (a) black bear, (b) elk, (c) Blanding’s turtle, and (d) Golden-cheeked
Warbler. Best models determined by information-theoretic criteria were (a) the adaptive kernel, (b) two-mode circular normal mix,
(c) two-mode bivariate normal mix, and (d) bivariate normal.
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For this approach to realize its full potential, we

should move beyond the convenience of using a single

model to describe home ranges and begin exploring

multiple models for both describing the home range and

understanding important ecological processes that affect

animal space use. For example, each home range model

that we considered, except kernel models, was derived

from hypotheses about ecological factors affecting space

use. The BVN model approximates the space use of an

animal that ‘‘wanders’’ out but must continually return

to a central place (e.g., nest or den site) (Dunn and

Gipson 1977). Similarly, the 2BVN is based on the idea

that an animal has two foci of activity and wanders out

from these. The CU model, characterized by a uniform

distribution of space use within a sharp boundary, is

theoretically the result of low-density, territorial animals

in relatively homogeneous environments (Grant 1968,

Covich 1976). One could use information-theoretic

model selection to answer the question of whether a

particular animal’s space use was consistent with a

central-place wanderer or the result of territorial

behavior.

We see no need to limit the possible home range

models to the ones that we considered. With objective

criteria for deciding among home range models, new

models based on other hypotheses of space use are

encouraged. In the future, we see a great opportunity to

incorporate additional spatially explicit variables, other

than x�y coordinates, into home range models. For

example, space use of many animals is affected by the

location of important resources, escape cover, and other

organisms of the same and different species. By

incorporating this information, we are likely to get

home range models with better fit while enhancing our

understanding of the ecological factors affecting space

use. However, as additional variables are incorporated,

home range models will increase in complexity and there

will be a need to evaluate these more complex models

against simpler ones. Use of information-theoretic

criteria such as those presented here will greatly aid this

development.
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APPENDIX B

Percentage of 100 replicate samples for which each home range model was a competing best model (i.e., DCVC or DAICc , 3)
(Ecological Archives E087-066-A2).

SUPPLEMENT 1

Animal location data used for home range analysis (Ecological Archives E087-066-S1).
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Visual Basic source code containing the algorithms described in this paper (Ecological Archives E087-066-S2).
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